Chapitre 10 ¢ Cinématique du point

1. a. D’aprés le doc. 1 : ‘ !
« Les deux premiéres PR ' '
positions de la voiture
sont si proches qu’elles
semblent confondues sur
le schéma. »

Il'y a donc 10 intervalles
de temps dans la phase
1 et dans la phase 2.
Les phases 1 et 2
durent 10,0 s. On en
déduit donc que la durée
entre 2 positions successives correspond a 1,00 s.
Pour vérifier que la norme de la vitesse reste
inchangée au cours de la phase 2 et de la phase 3,
on mesure (avec sa régle) la distance entre deux
positions successives a différents moments. Cette
distance étant toujours la méme, on en déduit que la
vitesse est toujours identique en norme.

b. Il s’agit du point de vue de I'éléve. Normalement,
I’éléve sait qu’il N’y a pas d’accélération en phase 3.
Il peut aussi dire (de maniére erronée) qu’il n’y en a
pas en phase 2.

d
2.a. %(t) = d—):(t) Ainsi, v,(t) est le coefficient
directeur de la tangente a la courbe au point
considéré. La courbe est une fonction croissante, le
coefficient directeur est positif, donc v,(t) est positif.

La courbe n’est pas une fonction linéaire et devient
de plus en plus pentue. Ainsi, au fur et a mesure, v,(t)

augmente.
1 d

b. x(t) = 5k Ainsi, vi(t) = d—);(t) = kt.

D’aprés le doc. 1, k > O. v,(t) est donc positive.

dv

d—tx(t) = k > O donc v,(t) augmente avec le temps.

Phase 1

Phase 2

Phase 3
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Ces constatations sont en accord avec la question

d
c. Comme vi(t) = kt, au(t) = d—vt (t) = k.
De plus, y est nulle a tout moment.
0=20=0 et an="21=0
W =50 ="0 et all)=71=0.

Le vecteur accélération est donc constant. Il est dirigé
selon I'axe des x dans le sens des x croissant.

3. La norme de la vitesse est inchangée (1a) mais
comme le vecteur vitesse est toujours tangent a la
trajectoire, on en déduit que la direction du vecteur
vitesse change. Le vecteur vitesse n’est donc pas
constant.

Le vecteur accélération ne peut donc pas étre nul.

4. Dans cette phase la norme de la vitesse est
inchangée (1a). La trajectoire est, cette fois-ci, une
droite, la direction du vecteur vitesse reste identique.
Le vecteur vitesse est donc constant sur cette phase 3.
Le vecteur accélération est nul dans cette troisieme
phase.

¢ Si on dispose des coordonnées de la position d’un
point au cours du temps (ses équations horaires), en
dérivant par rapport au temps ces coordonnées, on
détermine les coordonnées du vecteur vitesse.

En dérivant par rapport au temps les coordonnées du
vecteur vitesse, on détermine les coordonnées du
vecteur accélération.

e Pour que le vecteur accélération soit nul, il faut que
la norme du vecteur vitesse soit constante
(mouvement uniforme) mais aussi sa direction et son
sens (mouvement rectiligne).

Ainsi, le vecteur accélération ne peut étre nul que
pour des mouvements rectilignes uniformes.
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1. a. Les enregistrements 1 et 2 montrent des
mouvements circulaires. Les enregistrements 3 et 4
montrent des mouvements rectilignes.
b. Les mouvements uniformes sont les mouvements
des enregistrements 1 et 3. En effet, la distance
parcourue entre deux points successifs semble la
méme a tout instant.
2. Tragons le vecteur vitesse au point 3.
Pour tracer le vecteur vitesse au point Ms, on
détermine la vitesse moyenne entre le point d’avant
. N MoMy
et le point d’apreés : V3 = Y
Sur la figure, M2M4 mesure 4,0 cm.
—2

Vs = Llo_a =0,20 m-s*

2x100 x 10
Sur le schéma le vecteur vitesse v est tangent a la
trajectoire, a le sens du mouvement et sa longueur,
compte tenu de I’échelle, est 4,0 cm.
De méme, au point5: vs=0,20 m-s™
Sur le schéma le vecteur vitesse Vs a une longueur de
4,0 cm.

3. Pour tracer les vecteurs accélération :
au point 3 et au point 6 pour I’enregistrement 2 :

Théme 2 e Mouvement et interactions

. -
On construit Av,. On mesure sa norme. Sur le
schéma, le vecteur a une longueur de 2,0 cm.
. . ind
Ainsi: Av, = 0,10 m-s™
La norme du vecteur accélération est :

- 1 2 . - ~
Sur le schéma, le vecteur accélération a, a méme

sens et méme direction que le vecteur A34. Sa
longueur, compte tenu de I'échelle, est 5,0 cm.
Vecteur vitesse au point 7 : vz = 0,20 m-s™ (4,0 cm
sur le schéma).

Vecteur vitesse au point 9 : vo = 0,20 m-s™ (4,0 cm
sur le schéma).

La construction de AVS a une longueur de 2,0 cm sur
le schéma, soit Avs = 0,10 m-s™. On en déduit que

g ~ -~ . .
as = 0,50 m-s2. ag a méme sens et méme direction
- P
que le vecteur Avg (5,0 cm sur le schéma).

d - ~ .
Les deux vecteurs a, et ag ont méme norme, mais
leurs directions ne sont pas les mémes.

Longueur de Mesure de la Norme de la Longueur de
Point Point ou est Me§ure de Itiorme de la la fleche v, variation du , Norp1 e d? la fleche a,
s p la distance | vitesse en ce longueur de I'accélération
considéré mesurée la MM oint v compte tenu la fleche A vecteur a compte tenu
i vitesse n (e":cr;'];l (gn m-s*ni) de 'échelle | '@ "CCNE BV1 | yitesse av; (en m’-s*z) de I’échelle
(en cm) 0 e (en m's) (en cm)
3 | n=im1=2 o 0,33 5.5 3,9 0,20 0,98 9,8
= , , , ,
n=i+1=4 4,9 0,25 4.9
-6 n=i-1=5 4,1 0,21 4.1 28 0.14 0.70 70
= n=i+1=7 2,5 0,13 2,5 ' : ' '
au point 3 et au point 7 pour I’enregistrement 3 :
) o Mesure de | Normedela | "O"€UeUrde | mesuredela | Nomedela | o o 4e | Longueurde
Point Point o1 est N ) la fleche v, variation du ) PN la fleche a,
s p la distance | vitesse en ce D longueur de I'accélération
considéré mesurée la M..M oint v compte tenu la fleche A vecteur a compte tenu
i vitesse n (enr_110r:1+)1 (:n s 1’1) de I'échelle | '2T€CN€ OVi | yitesse Av; (en m'-s-2) de I’échelle
(en cm) (en cm) (en m-s71) (en cm)
n=i-1=2 2,15 0,11 2,15
i=3 - 0 0 0 0
n=i+1=4 2,15 0,11 2,15
n=i-1=6 2,15 0,11 2,15
i=7 - 0 0 (] 0
n=i+1=8 2,15 0,11 2,15
au point 5 et au point 8 pour I’enregistrement 4 :
Longueur de Mesure de la Norme de la Longueur de
Point Point ois est | Mesure de | Norme de la la fleche v, variation du , bl aiE) d? la fleche a;
s p la distance | vitesse en ce longueur de I'accélération
considéré mesurée la L compte tenu - . vecteur compte tenu
b - Mn-1Mp.1 point v, 'k la fleche Av, ; a R
i vitesse n (en cm) (en m-s) de I’échelle vitesse Av; (en m-s=2) de I'échelle
(en cm) (en cm) (en m-s1) (en cm)
n=i-1=4 1,8 0,090 1,8
i=b - 1,1 0,055 0,28 2,8
n=i+1=6 2,9 0,15 2,9
n=i-1=7 3,5 0,18 3,5
i=8 - 1,2 0,060 0,30 3,0
n=i+1=9 4,7 0,24 4,7

e Pour I'enregistrement 1, I'accélération est non
nulle. Elle est centripéte.

Pour I’enregistrement 2, I'accélération est non nulle,
mais du fait du freinage elle n’est pas uniquement
centripéte.

Pour I'enregistrement 3, I’accélération est nulle.

Pour I'enregistrement 4 I’accélération est non nulle,
et dirigée dans la direction et dans le sens du
mouvement.

e L’accélération est donc nulle uniguement pour un
mouvement rectiligne uniforme (enregistrement 3).
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(3 Etude d'un mouvement filmé
Exemples de calculs réalisés avec Latis-Pro :

Théme 2 e Mouvement et interactions

I=(Vy(n+1]-Vy[n-1])I(‘l’errps.Mouvement Y[n+1}-Temps.Mouvement Y[n-1])

|E(vxin+11-Vx{n-1])/(Temps. Mouvement X[n+1}-Temps.Mouvement X[n-1]) |

| =(Mouvement Y[n+1}-Mouvement Y[n-1])/(Temps.Mouvement Y[n+1}-Temps.Mouvement Y[n-1])|

“=(Mouvement X[n+1}-Mouvement X[n-1])/(Temps.Mouvement X[n+1}-Temps.Mouvement X[n-1])| /
AV

[zvxr2+vyr2y0 5|
yi

=(ax"2+ay*2y"0.5

‘emps (Mouvement Y)||Mouvemé(\t ¥Y||vx Vy v / ax / ay / a l
; |/m \ |m/s m/s [mzd m/s2 m/s2 | S WA
ls 803,074 um

30 ms 241,974 pm\g,ns m/s -11,222 mm/ﬁKSIS m// /
J1ls -319,125 ym 10,303 m/s |-16,833 mm/s| 0,304 m/s |-0,169 m/s2 56,11 mm/s2/]0,178 m/s? ‘
)15 s -1,441 mm 0,298 m/s -5,611 mm/s 0,298 m/s |56,173 mm/s2 |0,224 m/s2 0,231 m/s2

Exemples de courbes obtenues :

V en mm's, Vx en mm/s, Vy an mmys

300 - g

sof----

200 300 S00

800 900

ax en mm/s?, ay en mnvs?, a en mm/s?

1000

s00

250 v oot + . . .

-300 s . .

~750

200 300 400 so00 600

700
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Chapitre 10 ¢ Cinématique du point

1. a. Compte tenu des erreurs de pointage, la vitesse
semble constante, en norme.
b. vy diminue, sans devenir négative. v,, au début
nulle, devient positive.
Le vecteur vitesse, au départ entieérement dirigé selon
|’axe des abscisses, est dévié dans la direction des
ordonnées croissantes.

X v(t)

<
<

A At)
Y

Ces constatations sont en accord avec le mouvement
de la bille.

2. a. L'accélération semble non nulle entre t; = 400
ms et t> = 700 ms.

Attention pour comparer clairement ces mesures avec
les positions sur la vidéo, il faut (avec le logiciel Latis-
Pro) repérer a quelles images les instants
correspondent (en regardant par exemple dans le
tableur).

6 0,25s 76,388 mm 0,25s
7 03s 91,554 mm 0,3s
8 0,35s 0,107 m 0,35s
B Joss lo,124m 0,4s
10 0,45s 0,14 m 0,45s
11 0,5s 0,157 m 0,5s

Dans ce cas, l'instant t; = 400 ms correspond a la 9°
ligne du tableur.

Il faut ensuite prendre en compte le fait que I'image 1
du tableur correspond a la premiére image sur laquelle
la position de la bille a été repérée (la position du
premier « clic »).

(@) Mouvement circulaire

1- . *  Positions de la cabine
6 A ’
e = >
24 .
£ . %
S o o .
>
-2 .
-4 4
¢ -
—64
-6 -4 =2 0 2 Rl 6

x (en m)
a. Le mouvement de la cabine est tout d’abord

circulaire accéléré (phase 1).

Il devient ensuite circulaire uniforme.

Pour la deuxiéme sous-question, I'idée est de laisser
émerger la conception trop souvent partagée par les
éléves qu’un point subit une accélération lorsque sa
vitesse varie. On peut ainsi s’attendre a ce que les
éléves disent que I'accélération sera non nulle dans
la premiére phase du mouvement uniqguement.

72

Dans le cas envisagé, la
balle se trouve a la
premiére position cliquée
(la 1" ligne du tableur) a
la 4° image de la vidéo.

C’est donc I'image 12 de la vidéo
qui correspond a la 9° ligne du
tableur, c’est-a-dire a l'instant

t1 = 400 ms.

Une fois ces précautions prises, on s’apercoit que
I’accélération devient non nulle au moment de la
déviation de la bille.
c. En rouge, la partie de la trajectoire ol I'accélération
est non nulle :

X

<
<

4
Au moment de la déviation, la coordonnée a, devient

négative, tandis que la coordonnée a, est positive.
On en déduit I’orientation approximative du vecteur
accélération a.

e C’est au moment de la déviation que I'accélération de
la bille devient non nulle (et ce, alors méme que la
norme de la vitesse est constante). Alors méme que la
norme du vecteur vitesse est constante, I'accélération
est non nulle au moment de la déviation.

* En généralisant la construction réalisée ci-dessus,

on peut dire que I'accélération est dirigée vers
I’intérieur de la courbure de la trajectoire.

b. #calculs approchés des coordonnées des vitesses

i in range(l,N-2):
vx[i] = (x[1i+1]-x[1i-1])/(2*Dt)
vylil = (y[i+1]1-y[i-11)/(2*Dt)

#Calculs approchés des coordonnées des accélérations
for i in range(2,N-3):

ax[i] = (vx[i+1]-vx[i-1])/(2*Dt)
ayli] = (vyl[i+1]-vyl[i-1])/(2*Dt)
— Vecteur vitesse calculée
- Vecteur accélération calculée
o Positions de |a cabine
| y 7
8 A >
4 b3
/\ A
2 A
2 ‘
£ — N
g 0/ . .
>
-2 g
A
\
\
-4
< -
/ \ .
-6 / \
W
-6 =4 -2 0 2 4 6
x (enm)
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Le vecteur accélération n’est nul @ aucun moment.
Au départ, il n’est pas centripéte. Ensuite, dans la
deuxiéme phase du mouvement, il devient centripéte.
Il est a tout moment dirigé vers I'intérieur de la
courbure.

2. a. 35 + an PR ¢
at
—~ 30 .
)
E 25
c
Q
z 20
5 P
® 15
@
® 10
v
<
5
04
0.5 1.0 15 2.0 25 3.0 35
t(ens)
Le vecteur accélération s’exprime dans la base de
o o L dv v
Frenet : a=atut+anun=aut+3un

Ainsi dv et i

insi, at = — an=—

P A "" R’ _

On sait que dans la premiére partie du mouvement, le
mouvement de la cabine est accéléré, sa vitesse

dv L dv
augmente. pm > 0 et ainsi, at = p7s > 0.
b. Comme, dans la deuxiéme partie du mouvement, la

. . . dv
vitesse de la cabine devient constante, pri 0.

- dv
Ainsi, at=a=0.- - - N
c. Lorsque la cabine ralentira, sa vitesse diminuera :

dv L. dv
p < 0 et ainsi, at = pm < 0. La courbe prendra des

valeurs négatives, puis s’annulera lorsque la cabine
sk dv . . dv
sera arrétée : i 0 implique at = P 0. La courbe

représentant a: en fonction de t aura I'allure suivante.
a A

0 /

d. Lorsque la cabine a une vitesse stabilisée (en
norme), I'accélération a seulement une composante
normale, selon U,. Ainsi, I'accélération totale subie
par la cabine correspond a la coordonnée an de
I"accélération. Sur le graphique obtenu par le
programme (en utilisant les coordonnées du réticule

qui s’affiche en bas a droite de la fenétre), on mesure
une accélération finale : a = a, = 36,4 m-s=

\

Y~

r
35 4 an

at

N oW
n O
L A

N
o
o

Accélération (en m/s?)

0.5 1.0 1.5 2.0 2.5
t(ens)

#€d| + Q= B

Théme 2 e Mouvement et interactions

Cette accélération correspond a 3,71g.
En effet :

Cette valeur est donc assez proche de la valeur
attendue (4g).
3.a. Lorsque t€[0s; 2,65 s]:

0 = kt Sy _L_w?
Y()_ a= T "=p 7R
A partir du demi-tour suivant, la norme de la vitesse

est constante. Lorsque t €]2,65 s ; +oo[ :

dv v (v)?
Vi = Vo a=—=0 an=—=
dt ""R™ R
#Calculs théoriques de l'accélération
i in range(l,N-1):
temps[i] <= 2.65
anth[i] = (k*temps[i])**2/R
atth[i] = k
1 :
anth[i] = v0**2/R
atth[i] = 0
40
an
35 anth 3 o
at
% 304 — atth
€
c 25
&
g 20
© 15
o
E p
g 10
£ P
5 A ST S A \\
e . | -
05 1.0 15 2.0 25 3.0 3.5
t(ens)
3. b.

#Le fichier csv d'ou l'importation des valeurs est
effectuée
fichier importe = 'pointage centrifugeuse 2.csv'
#Ne pas modifier les 4 lignes suivantes
ith open(fichier importe, newline='")

spamreader = csv.reader (csvfile,
delimiter="' ;', quotechar='|")

for row in spamreader:

table.append (row)

csvfile:

Dt = 0.100 #pas de temps en s
40 z
an Civieeesieeaes
25 anth
« at i
% 304 — atth
Q2 4
£ 4
c 25
) 4
‘520
=1
Ci1s 2
9
T ,
S 10
<
5 e ABSARI
0 Ls

05 10 15 20 25 30 35 40
t(ens)

Avec davantage de points, les courbes calculées se
rapprochent des courbes théoriques.
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Chapitre 10 ¢ Cinématique du point

Exercices

Exercices 1 a 17 corrigés a la fin du manuel de I'éleve.

Exercices 18 & 20 corrigés dans le manuel de I'éléve.

PX1 a. Tracé du vecteur vitesse , jMB
Vi1

) MoM
au point Ms : vs = =22

2At 4
M2Ms = 5,0 m (sur la figure, /{A
2,5 cm). L

%0 _ gt

T 2x0,500 5,0 m-s +M”
Sur le schéma, le vecteur vitesse

V3 a une longueur de 2,5 cm. +

On fait de méme pour vs et vy :
MiMe = 5,0 m implique

V3

MsMg . M
= = . . 9
Vs AL 5,0 m-s
Sur le schéma, le vecteur vitesse &
est tangent a la trajectoire, a le Mg

sens du mouvement et sa

longueur, compte tenu de

|’échelle, est de 2,5 cm.

M1oM12 = 5,0 m implique
M1oM1o

_ _ o1
Vi1 AL 5,0 m-s™.

Sur le schéma vs et v,, ont tous i i
deux une longueur de 2,5 cm. M, M,

A:s du mouvement
b. Voir la figure ci-contre.

Le vecteur correspondant a la variation du vecteur vitesse est représenté par une fleche de longueur 0,55 cm :
Ava=1,1 m-s?

c. La norme du vecteur accélérationest: aa=—=——""——=1,1 m-s2

Voir la figure ci-dessus.

Sur le schéma, le vecteur accélération @; a le méme sens et la méme direction que Av,.
Sa longueur, compte tenu de I'échelle, est de 4,4 cm.

d. Le mouvement est uniforme.

@ 1.t: le temps en secondes (s)
At : une durée en secondes (s)

x(t) : I'abscisse du point en métres (m)
v(t) : la norme du vecteur vitesse en métres par seconde (m-s™)
vi(t) : la coordonnée selon I’axe (Ox) du vecteur vitesse en métres par seconde (m-s™)

R : une distance qui s’exprime en métres (m)
Une accélération s’exprime en métres par seconde carré (m-s72).

v(t)? Y . L
2. a. N est en m-s™. C’est une formule compatible avec une accélération.

dx 1 , . .
b. a(t) est en m-s™. Ce n’est pas une formule compatible avec une accélération.

d2vx
dt2

d. vi(t + At) — v,(t — At) est en m-s™. Ce n’est pas une formule compatible avec une accélération.
d2x . i .

e. @(t) est en m-s2. C’est une formule compatible avec une accélération.

v(®) 4 , . S
f. ra est en m™-s7*. Ce n’est pas une formule compatible avec une accélération.

C. (t) est en m-s=3. Ce n’est pas une formule compatible avec une accélération.

Ve(t+ A — v (t— At)
g o —

AL est en m-s2. C’est une formule compatible avec une accélération.

v(®) , . P
h. = est en s*. Ce n’est pas une formule compatible avec une accélération.

dv,

i. d—t(t) est en m-s2. C’est une formule compatible avec une accélération.

74
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Théme 2 e Mouvement et interactions

E a. x(t) et y(t) sont en métres. Ainsi : N dv. - vt - i
* 1,50 est en métres par secondes carré (m-s=). a a. a(t) = (O u + == Uy Ny >M
* 8,33 est en metres (m). U, est tangent a la A\ tn

» 2,50 est en métres par secondes au cube (m-s=3). trajectoire, son sens N

e 5,72 est en métres par secondes (m-s™). correspond au sens du 0

b.At=0s,x(t=0)=8,33m et yt=0)=0m.
C. w(t) = 3,0t v,(t) = 7,50t - 5,72
d. a(t) = 3,0 ay(t) = 15,0t

d . P
mouvement. u, est dirigé
selon le rayon du cercle, Sens du
.. mouvement
vers le centre de celui-ci.

- . b. Compte tenu de I'expression de I'accélération, le
¥l a. Le mouvement 1 est rectiligne uniforme.

Le mouvement 2 est rectiligne accéléré (la norme de premier terme peut s’annuler si %(t) =0, c’est-a-dire
la vitesse augmente). si le mouvement devient uniforme.

Le mouvement 3 est rectiligne décéléré (la norme de Le deuxiéme terme ne peut s’annuler que si v(t)

la vitesse diminue). devient nulle (absence de mouvement) ou si R

b. Le mouvement 1 est rectiligne uniforme :  a(t) =0 devient infini (le mouvement devient alors rectiligne).
Le mouvement 2 est rectiligne accéléré (la norme de Ainsi, il ne peut y avoir de mouvement circulaire sans
la vitesse augmente) :  a.(t) >0 accélération.

Le mouvement 3 est rectiligne décéléré (la norme de c. L’expression de I'accélération dans le repére de

la vitesse diminue) 1 a(t) <0 Frenet montre que le terme selon U, est

c. Le vecteur accélération :

- ] nécessairement positif. Le vecteur accélération sera
¢ pour le mouvement 1 (rectiligne uniforme), est nul ;

donc toujours dirigé vers I'intérieur de la courbure, ce

e pour le mouvement 2 (rectiligne af;célé_ré), est dans qui exclut le schéma 4, indépendamment de la

le sens du mouvement (de gg_uohe a’dEOJte’) ; situation physique envisagée.

e pour le mouvement 3 (rectilighe décéléré), est dans . . ) dv

le sens opposé du mouvement (de droite & gauche). Situation 1. La vitesse augmente en norme : a(t) > 0.

. . . , 21 2 . ez nd
Ainsi, la partie de I'accélération dirigée selon u, est
-
dans le sens de u;.
Le schéma correspondant est le schéma 2.

E a. Un mouvement rectiligne désigne la trajectoire
(droite) d’un mouvement. Un mouvement uniforme

désigne la norme de la vitesse (constante). Les deux dv
termes sont donc indépendants I'un de I'autre. L’'un Situation 2. La vitesse diminue en norme : E(t) < 0.
n’'implique donc pas I'autre.

. . . y 212 . oz =
, e . . Ainsi, la partie de I'accélération dirigée selon u, est
b. L’accélération est nulle uniquement pour les

N
mouvements rectilignes uniformes. Pour les dans le sens opposé a u;.
mouvements autres (circulaires ou curvilignes) Le schéma correspondant est le schéma 1.
I'accélération sera non nulle méme si le mouvement Situation 3. La vitesse est constante en norme :
est uniforme. ﬂ(t) = 0. Ainsi, la partie de I'accélération dirigée
¢. Un mouvement accéléré se fait avec une accélération dt R
non nulle. Uniformément accéléré implique, en plus, selon u, est nulle. L'accélération est dirigée
que cette accélération reste constante. uniquement selon Un.
d. Un point qui ralentit, n’a pas un mouvement Le schéma correspondant est le schéma 3.
rectiligne uniforme. Il subit donc une accélération. Il
est donc accéléré. Le sens de I'accélération est PX] a. Si la vitesse est multipliée par 2, I'accélération
opposé au sens du mouvement. est multipliée par 4 :
e. La composante selon U, ne peut pas étre nulle (si le o . (@2 42
mouvement est circulaire). Ainsi, un mouvement sivi=2valorsa’ =——=—-=4a.
circulaire se fait nécessairement avec une accélération. b. Si le rayon est multiplié par 2, I'accélération est
f. Il y a deux termes a I'accélération donnée dans le divisée par 2 :
repere de Frenet. Si le mouvemeint circulaire n’est pas SiR = 2R, alors @’ = v _ a
uniforme, la composante selon u; n’est pas nulle. ) 2R 2 o

c. Si le rayon est divisé par 2, I’accélération est
Exercice 26 corrigé & la fin du manuel de I'éléve. multipliée par 2 :

. R v 22

SiR' =, alorsa’ = =—=2a.
a. b. c. d. 2 2 R
v, (en m-s™) 1,50 1,50 -2,0 2,0

£l a. La tangente & la courbe est horizontale &
v, (en m-s™) -1,50 3,00 4,0 4,0 I’instant initial. On en déduit que la vitesse de la

fusée est nulle a I'instant initial.

st 2,12 3,35 4.5 4.5 _ .
vienms? b. On observe que le coefficient directeur des
En effet, v = /(Vx)g +(v,)2. tang.entes ala courlcze augmente au cours qu temps.
La vitesse de la fusée augmente au fur et @ mesure

que le temps passe.
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Chapitre 10 ¢ Cinématique du point

c. A y(enm) )
7 000 4 A4
6 000 - /
5000 4
4000 4 /B
S A
3000 - y /4l
2000 - //;//’};4;
1000 +
0 - f/?/l C% T T T T lr((:rns;)
01 2 3 45 6 7 8 910
N xg—xp 3500-0 5 a
= = —-—— = X
Ati=4,0s, vit1) ta—tn _ 8,0-2.0 5,8 x 10° m-s
N xp—xc 7000-0 3 a
= == X . .
At =8,0s, vit2) o—tc _ 10.0-4.0 1,2x10° m-s
d. Vérifions s’il y a proportionnalité entre v,(t) et t :
W) 0 58x 102 | 1,2 x 10°
(en m-s™)
t(ens) 0 4,0 8,0
Kk = e asg? t%itlsbllees
=% - 1,5x10% | 1,5 x 102
_ coefficients de
(en m-s2)
proportionnalité

v,(t) et t semblent proportionnels. Le coefficient de
proportionnalité (égal a I’accélération de la fusée) est
k=1,5%x10%?m-s?2 = 15¢.

EE a. Le mouvement est rectiligne (énoncé). On
choisit I’axe (Ox) comme correspondant a la direction
et au sens du mouvement. La courbe représentant
vi(t) pour I'enregistrement 1 est une droite
(décroissante), son coefficient directeur est une
constante (négative). a,(t) sera constante tout au

long du mouvement. On a affaire @ un mouvement
rectiligne uniformément accéléré.

b. Le mouvement est rectiligne (énoncé). On choisit
|’axe (Ox) comme correspondant a la direction et au
sens du mouvement. La courbe représentant v,(t) pour
I’enregistrement 2 n’est pas une droite, le coefficient
directeur de sa tangente en chaque point varie au
cours du mouvement. a,(t) ne sera pas constante tout
au long du mouvement. On a affaire a un mouvement
rectiligne accéléré (non uniformément).

c. Pour I'enregistrement 1 :

VxB _VxA _ 0—0,10
tg—ta  5,0-0
En norme, a(t1) = 2,0 x 102 m-s=2.

a(ty) = =-2,0x102m-s?

Av,(enm-s1)
0,10 4

0,08 1
0,06 1
0,04 1
0,02 1

g tlens)

0 T T T T 2 13 —>

0 1 2 3 4

A

W
(=)

En norme, a(t1) = 5,0 x 102 m-s=2.
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Av,(enm-si)

B t(ens)

>

Instant 0 1 2 3
a a a a.
o 0-0,10 0-0,09 0-007 | 0-0,055
Accelération| =—7—" | =255 | %00 |~ B0-0
g2 0- 0- 0- 0-
(G e =50 | =-30 | =-18 | =-11
x 1072 x 1072 x 1072 x 1072
b. A Accélération
0 (x10-2m-s-2) Temps (en s)
0 05 10 15 20 25 30
-1,0 1 o
-2,01
_3’0 -
-40
—S,O a4

c. L’accélération n’étant pas constante, le
mouvement n’est pas uniformément accéléré.

EE a. Voir schéma ci-contre.

>llt
2_> M
b. 30) = Yoy 4, + L g 8

- dv -
dt R " Up

Si le mouvement est

O

d
uniforme, d—‘;(t) =0.

L’accélération est dans ce

cas dirigée selon le vecteur
2

- Ve >

a(t) = ) up,

A’ens du

N
normal U, : mouvement

EF1 1. Les données de la troisiéme colonne
correspondent a I’explicitation de combien la norme
de la vitesse va augmenter et en combien de temps.
Ce n’est pas une donnée directe de la norme de
I’accélération qui s’exprime en m-s=2,

2. a. Un mouvement est rectiligne uniformément
accéléré, si sa trajectoire est une droite (rectiligne)

et si I'accélération 5(t) du point est constante au
cours du mouvement.

b. Si le mouvement est rectiligne uniformément
accéléré, le mouvement se fera selon un seul axe

= 2 = .

((Ox), par exemple). Ainsi, a(t) = a.(t) = =g
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Si la norme de I'accélération est constante, alors
m-s~* et At en secondes.

Av oA
NS Dans ce calcul, Av doit étre en

Montagnes Vitesse Accélération | Accélération
russes maximale maximale (en m-s72)
Formula | 0-240 km-h*

Rossa 240 km-h ends 17
X At
Ring Racer | 217 km-ht | O-217 km-h 24
en2,5s
Top Thrill it 0-193 km-h
Dragster 193 kmh ends 13
) At
Dodonpa | 172 km-ht | 0172 kmh 26
en1,8s

3. Le passager aura le plus de sensations dans le
parc Dodonpa. Malgré sa quatriéme place au
classement des vitesses maximales, c’est lui qui
offre I'accélération la plus grande.

@ a. Le point peut avoir une vitesse constante en
norme mais avoir une vitesse qui ne serait pas
constante vectoriellement. Ainsi, le point pourrait
subir une accélération avec un mouvement uniforme.

dv, > v(t?

b. Dans le repére de Frenet : 5(t) = E(t) u; + N []n
. . dv
Si la norme de la vitesse v(t) est constante E(t) =0.
2
. . oy 2 . - Ve >
Ainsi, I'accélération sera : a(t) = = Un

-

Elle sera portée par le vecteur unitaire u, (dirigé du
point vers le centre de la courbure).

V2—>

5
c.at) = ) uy,

2
En norme, a = VE. Siv =300 km-h™=83,3m-s? et
a=10g =10 x 9,81 = 98,1 m-s2, on obtiendrait

serait un cercle de rayon R = 70,7 m.

Exercice 36 corrigé a la fin du manuel de I'éleve.

d
a. vi(t) = d—’:(t) =5,76 m-s*

d
WD) = o(0) = 1,95 m-s

b. Les coordonnées du vecteur vitesse sont
constantes, le vecteur vitesse est constant. Si le
vecteur vitesse est constant, sa norme I'est aussi.
Si, a tout moment, le vecteur vitesse est constant,
alors le mouvement est rectilighe. Le mouvement est
rectiligne uniforme, son accélération est donc nulle.

dv, dv,
alt) = (=0 a(t) = A1) =0
Le vecteur accélération est nul.

C. Vi(t) = 5,76 m-s™* v(t) = 1,95 m-s™
La norme de la vitesse est v(t) = \/(vx(t))Q + (vy(t)) 2,

v(t) = /(5,76)2 + (1,95)2 = 6,08 m-s™

Pour déterminer I’angle entre I’horizontal et la
direction du mouvement, nous allons déterminer
I’angle entre I’horizontale et le vecteur vitesse.
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Théme 2 e Mouvement et interactions

Le triangle est rectangle,
on peut utiliser les

relations trigonométriques : v, (1)
v, 1,95
tan(a) = - =— @@= @ —— .
(@) vy, 5,76 v, (t)
a=18,7°

@ a. Le vecteur vitesse V(t) ne pourrait pas étre
constant. En effet, la direction du mouvement change
au cours du mouvement.

b. Le vecteur vitesse n’est pas constant implique
que le vecteur accélération ne peut pas étre nul.

c. Le mouvement serait alors circulaire uniforme.

d. Dans le repére de Frenet :

2
- dv, - v(t)© >
= — + —
a(t) dt(t) Uy R uy,
Si la norme de la vitesse v(t) est constante, alors
dv . . P . - V2 -
E(t) = 0. Ainsi, I'accélération sera : a(t) = ) Uy
- V2 - V2
e.a(t) = ) uy, En norme, a = ry avec :

R =6 371+ 8,848 = 6 380 km = 6,380 x 10° m
Or v =+aR = /9,80 x 6,380 x 10°
v=7,91 x 10® m-s? = 2,85 x 10* km-h?

Cette vitesse correspondrait a M
P 1235

la vitesse du son (Mach 23,0).

= 23,0 fois

d
@ a. vi(t) = d—’:(t) = 20,0t — 2,00¢2

b. a(t) = %{t) = 20,0 - 4,00t

c. Le mouvement est rectiligne (énoncé) et accéléré.
Le mouvement n’est pas uniformément accéléré car

la norme de I'accélération n’est pas constante.
d.Ato=0s: a(t)=20,0- 4,00t = 20,0 m-s2
Att=5,0s: a(t1) =20,0-4,00t =0 m-s2

e. v(t1) = 20,0t — 2,00t? = 50 m-s* = 1,8 x 10 km-h™*
f. x(t) = 10,0t2 — 0,667t = 1,7 x 10° m

d

m a.a(t) =10 m-s?  oralt) = f(t)
donc v,(t) = 10t + K avec K une constante.
Orat=0, v(0)=K=0. Ainsi, v(t) = 10t.

d
b. vi(t) = — (1
donc x(t) = 5,0t? + K’ avec K’ une constante.
Or, si on choisit x(0) = 0, x(t) = 5,0t2.
c. L'instant t: correspond a I'instant ou :
V(t1) = Vmax = 306,1 m-s™ or v(ti1) = 10t..
Ainsi, t: = V;“gx =31s.
La distance parcourue pendant cette phase est :
x(t1) = 5,02 = 4,8 x 10° m
d. Pour permettre a la capsule d’atteindre sa vitesse
maximale, il faudrait donc un trajet minimum de
9,6 x 10% m soit environ 9,6 km.
Sur de grands trajets (Paris-Marseille, par exemple)

cette phase d’accélération serait négligeable devant
la distance a parcourir.
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Chapitre 10 ¢ Cinématique du point

m a. v(t) = %{t) = wRcos(wt)

vi(t) = %(t) = —wRsin(wt)

b. Le mouvement est uniforme si la norme de sa

vitesse est constante :  v(t) = \/(vx(t))Z + (vy(t))2

Ici, v(t) = \/(chos(wt))Z + (~wRsin(wt))?

v(t) = /w2R2(cos?(wt) + sin?(wt))

Or cos?(x) + sin?(x) =1 donc v(t) = Vw2R2 = wR.
Le mouvement est uniforme, mais le mouvement
n’'est pas rectiligne.

X

d
c. at) = d—vtm = —w?Rsin(wt)
dv,
ayt) = E(t) = —w?Rcos(wt)
d. Comme les valeurs de a.(t) et a,(t) changent au

cours du mouvement, I'accélération de la voiture
n’'est pas constante.

Norme de I'accélération : a(t) = J(ax(t))2+ (ay(t))2

a(t) = \/ (~w2Rsin(wt))? + (~w2Rcos(wt) )2

a(t) = v w*R?(sin2(wt) + cos2(wt))
Or cos?(x) + sin?(x) =1 donc a(t) = v w*R? = w?R.
La norme de I'accélération est constante.
e. Réalisons le produit scalaire entre les vecteurs 5(t)
et v(t) : a(t)-v(t) = ax(t) x vi(t) + ay(t) x v(t)
a(t)-v(t) = —wRsin(wt) X wRcos(wt)

+ (—w2Rcos(wt)) X (~wRsin(wt))

a(t)-v(t) = —w3R?sin(wt)cos(wt) + wR2sin(wt)cos(wt)

5(t)-7(t) =0 : les vecteurs 5(t) et \_/)(t) sont orthogonaux.

f. Dans le repére de Frenet :

- - - dv, - v(t)© >
v(t) = v(t) u, ()=E()ut+Tun
. . d
Ici, le mouvement est uniforme : v(t) =v et d—‘t/(t) =0

On obtient dans ce cas : \7(t) =v D)t et 5(t) =

- .. P . . -
Le vecteur v(t) est dirigé selon le vecteur unitaire u,,
. - Py P
tandis que le vecteur a(t) est dirigé selon le vecteur
s d
unitaire u,. Les deux vecteurs sont donc orthogonaux.
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EE Le mouvement est supposé rectilignhe
uniformément accéléré. Cela implique que
|’accélération de I'avion se fait selon un axe unique
(ici, (Ox)) et est constante vectoriellement.

ay

0]

dv . .
Comme a, = d—tx(t), cela implique que :

Cela implique que a(t) = ( ) a, étant constante.

V(t) = a;t + k avec k une constante.
At=0s, v,(0) = 0 m-s™. Ainsi, v,(t) = a.t.

d
Comme v,(t) = d—:(t), on obtient :

1
x(t) = Eaxt2 + k' avec k’ une constante.

S 1
At=0s, x(0) =0 m. Ainsi, x(t) = Ea"t2'
Voyons a présent le texte. Lorsque I'avion parcourt
75 m (x(t1) = 75 m), 'avion passe de 0 & 250 km-h™
(Va(tz) = 69,4 m-s™). Ainsi :
1
x(t) = Eax@ vi(t1) = asts
Trouvons I'expression de t1 grace a la deuxiéme

< P _ ve(tD) RN _ E vi(t1)?
égalité : ti= _ax d’ou x(t1) = 5 —ax
. _ E Vx(tl)2
Et enfin : a =3 —x(tl)
1 69,42
Application numérique : a, = 2 75 = 32 m-s?=3,3¢g

Exercice 43 corrigé a I'adresse hatier-clic.fr/pct308
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https://www.hatier-clic.fr/pct308

Théme 2 e Mouvement et interactions

w _x1_1,0x0,50 _ o _ 1 _1,7x050 _ a
1.1. vo, AL —0,10 5,0m-s Vo, AL —0’10 8,5 m-s
1.2. -
Vo v, (1) Vox = VoCOS()
_____ Vo, = Vosin(a)
V('(r)
Ainsi, 2 = 2 _ ah(a).
Vox cos(a)
8,5
Application numérique :  tan(a) = o> 1,7 o= 60°
De plus, la norme de la vitesse a I'instant initial est : vo= [(Vo)? +(vp)2 = /(5,0)? +(8,5)2 =10 m-s™
_ , _ _MgMs 1,4 o
2.1. MsMs = 1,4 m (2,8 cm sur la figure) :  v. 26t - 2x010 7,0 m-s
MsM 1,15
MsM7 = 1,15 m (2,3 cm sur la figure) : Vo= —l=_—" 5,8 m-st

¥y A
+9
+
-+
-+
+
-+
2+ ds
1
+
j
o x
2.3. Sur le schéma la variation du vecteur vitesse a 4.2. La vitesse instantanée est calculée, pour une
une longueur de 1,1 cm : Avs =2,2 m-s™ position donnée, comme la vitesse moyenne entre la
2.4. La norme du vecteur accélération est : position d’avant et la position d’aprés.
Avs 1,8 > 4.3. Pour la premiére position, nous ne disposons
@ = = Sxo10_ 11ms pas de la position d’avant ; pour la derniére position,

nous ne disposons pas de la position d’aprés. Ainsi,

P 2 2 . - ~
Surle schéma le vecteur accélération as a meme la méthode précédente ne peut étre utilisée pour

sens et méme direction que le vecteur Av,. Sa calculer les coordonnées de la vitesse.
longueur, compte tenu de I'échelle, est de 5,5 cm. 4.4. i range (2,n-2)

3. Le vecteur accélération est vertical, dirigé vers le ax.append ((vx[i+1]-vx[i-1])/(2*dt))
bas. Sa norme est assez proche de I'accélération ay.append ((vy[i+1l]-vy[i-1])/(2*dt))
théorique (9,81 m-s2). Compte tenu des erreurs de 4.5. N'ayant pu calculer les premiéres et les
mesures et de constructions possibles, il semble dernieéres coordonnées de la vitesse, nous ne

pouvons, en utilisant le code de la question 4.4,
calculer les coordonnées des deux premiéres et deux
derniéres coordonnées de I'accélération.

P . -
que le vecteur accélération ag correspond au vecteur

champ de pesanteur terrestre §
4.1. La durée entre deux positions est nommée dt.
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Chapitre 10 ¢ Cinématique du point

- dv
E A.11.3, = d—i(t)

L’accélération de la voiture se fait selon un axe
unique (ici, (Ox)). Cela implique que :

alt)=adtyi et v()=w()7

L dvy
Ainsi, ay(t) = E(t).
Le mouvement étant dirigé selon (Ox), v, est positif a
tout moment du mouvement.
La voiture accélérant, le vecteur accélération est

dirigé aussi selon (Ox), a, est donc positif a tout
d
moment. En norme, a(t) = d—‘;(t)

v(t) = ait + k avec k une constante.

Orat=0,onav(t=0)=k=vo. Ainsi, v(t) = a1t + vo.

1.2.At=t1=5,4s, v(t1) = Va.

Soit v(t1) = ait1 + vo = Va.
70 _30

Ya~Vo _36 36

=2,1m-s>2
t1 5,4

Ainsi, a1 =

== = .52
84 = T2x1,00 2,5m-s

or a1 est constante :

d
2.1. w(t) = d—);(t) = ait + Vo

1
x(t) = §a1t2 + vot + k' avec k' une constante.

1
Orat=0,x(0) =k =0. Ainsi, x(t) = Ealt2 + vot.
2.2. La distance D parcourue par la Logan

1
correspond & x(t1) :  x(t1) = Ealtf +Vot1 =D

_1 2, 30 _
D—2><2,:L><5,4 +36><5,4—76m

’

B. 1.1. Les normes des vitesses sont :

GoG G4G
Vs =222 ot s =228
2t
1.2. G2Gs et G4Ges sont égales @ 21 m (2,1 cm sur la
21
i = = — g1 = .h?t
figure). Donc va = vs = 2% 1.00 11 m-s 40 km-h™.

1.3. En tenant compte de I'échelle proposée, les
vecteurs auront une taille de 5,5 cm.

1.4. Sur le schéma, la variation du vecteur vitesse au
point 4 mesure 2,5 cm. Ainsi, Ava = 5,0 m-s™,

Centre de la trajectoire
+
0

Echelle: 1,0 cm pour 10 m

3.1. En physique, on utilise plutét le terme d’accélération radiale.
(On peut méme ajouter centripéte car le sens de I'accélération est orienté vers le centre du cercle.

3.2. Comparons la valeur de I'accélération obtenue et |’accélération de pesanteur :

Cette accélération est donc négligeable devant I’accélération de pesanteur.
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1. Voir les biographies sur Wikipédia, par exemple.
2. a. Dans la premiére loi de Newton moderne, il y a
équivalence entre le fait pour un systéme d’étre au
repos ou en mouvement rectiligne et uniforme dans
un référentiel galiléen et le fait de n’étre soumis a
aucune force ou a des forces de somme nulle. C’est
bien ce qui est dit dans I’énoncé historique, avec « a
moins que... ». S’il n’y a pas de force, alors I’état de
repos ou de mouvement rectiligne et uniforme
perséverent. S’il y a une force, alors cet état change.
b. La notion de référentiel galiléen est absente de
I’énoncé historique.

c. La deuxiéme loi de Newton figure en filigrane,
puisque les commentaires introduisent le fait que les
changements sont liés aux forces (gravité,
frottements).

3. a. On retrouve la notion de variation de vitesse
(changements dans le mouvement), somme des
forces (force motrice), colinéaires (dans la ligne
droite).

b. La notion d’accélération n’est pas formulée
clairement, non plus que le fait que c’est la masse
qui lie force et accélération. La notion de référentiel
galiléen n’est pas non plus présente.

c. Ces commentaires pourraient se traduire ainsi : le
vecteur force et la variation du vecteur vitesse sont
proportionnels.

¢ Dans la vision de Newton, la force est la cause des
modifications du mouvement, pas du mouvement lui-
méme.

1. a. On réalise I'étape 2 du protocole plusieurs fois,
afin d’en faire une moyenne. On mesure 28 gouttes
pour 1 mL.

Le volume d’une goutte est donc V = 3,6 x 10 m®.
Le rayon d’une goutte est donc r = 2,0 x 10° m.

b. On obtient les valeurs et le graphique suivants.

z (enm) 0 0,0193 | 0,0386 | 0,0579 [0,0772 | 0,0965

t(ens) 0 2,59 5,02 7,72 10,05 12,4

z(enm)| 0,1158 | 0,1351 | 0,1544 | 0,1737 | 0,193 | 0,2123

t(ens) | 14,89 17,29 19,8 22,32 24,9 27,17

A z(en mm)
200 1

1751
150 4
125 4

100 A
75 - zZ=vt
50 - v=7,78x103m-.s!

25+ t(ens)

6 810121416182b222426

o

0 2

Théme 2 e Mouvement et interactions

C’est un mouvement rectiligne et uniforme,
d’équation z = vt. On trouve v = 7,78 x 10° m-s™.
2. a. La goutte subit :

- son poids P de direction verticale et dirigé vers

le bas ; F
- la poussée d’Archiméde F de direction )
verticale et dirigée vers le haut ; f/]

- la force de frottements quides]‘de direction
verticale et dirigée vers le haut.
b. P= ngg
P=1,0x10°%x 3,6 x10%x 9,81
P=3,5x10*N
F=pVg=9,0%x10%x 3,6 x10%x 9,81
F=3,2%x10*N
c. La vitesse est constante et la trajectoire est
rectiligne. D’aprés la premiére loi de Newton, la
somme vectorielle des forces est nulle.
On en déduit : I3+I7'+j’=6
soit: P=F+f douf=P-F=3x10°N

- S _ -2 pg.
f=6nnrv doncn—6mv—10><10 Pa-s.

Théoriqguement, n = 8 x 1072 Pa-s, I'écart est assez
élevé. La mesure effectuée peut donc étre considérée
comme non fiable (mais comme la donnée n’a qu’un
chiffre significatif, on peut imaginer que la valeur de la
viscosité est mal connue ; en tout cas, I'ordre de
grandeur est bon).

3. Le volume de la goutte est la principale source
d’erreur : le volume d’une goutte n’est probablement
pas le méme a chaque manipulation. Le volume
mesuré a I’étape 2 du protocole ne correspond
probablement pas au volume de la goutte utilisée lors
des mesures dans I'éprouvette.

Il'y a également une source d’erreur sur la masse
volumique et la viscosité de I'huile utilisée : les
valeurs données dans |’activité ne sont pas
précisément celles de I'huile utilisée ; de plus, ces
valeurs dépendent de la température.

La prise de mesures sur les temps de passage de la
goutte aux différentes positions constitue également
une source d’erreur pour le calcul de la vitesse.

¢ Aprés avoir fait le bilan des forces s’exercant sur le
systéme étudié, la premiére loi de Newton nous
donne une relation vectorielle entre ces forces. Aprés
projections sur les différents axes, il est possible de
calculer la norme d’une force, connaissant la norme
des autres forces a partir des données du probléme.
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Chapitre 11 « Mouvement et forces

1. On utilise une balle de ping-pong et un plan incliné.

Onmesure m=2,7g; h=13cm, d =90 cm donc 6 = 8,2°.

La courbe obtenue aprés pointage est donnée ci-dessous.

La modélisation avec une équation d’ordre 2 de la forme z = at? + bt + ¢ donne :

a=0,418 m-s? b=-7,426 x 103 m-s™

c=-3,632x10°m

0,75

oo

o

-3,532E-3
-7,426E-3
= 0,418

//Modele

z=c+b*Temps™1+a*Temps”2

0.2sf-- A Sere i Sy .,.4'7. S

2. a. Le systeme {balle} subit :

- son poids P de direction verticale et dirigé vers le
bas ;

- la réaction normale du support N de direction
perpendiculaire au banc
et dirigée vers le haut ;
- la force de frottement

avec le support]_)‘de
direction paralléle au
banc et dirigée dans le
Sens opposé au
mouvement.

b. Voir schéma ci-contre.

c. La deuxiéme loi de Newton s’écrit : 3+N+}'= ma
En projection le long de I'axe (Oz), on obtient :
mgsin® — f'= ma:

NG —
soit a; = m= gsind — %

~a

z

d. Par définition, I'accélération & est liée a la vitesse v

. 5> dv - ,
du systéme par a = pm soit, en projection sur I'axe (Oz),

dv, d_v

. f
= — Z = _—
a, = et Cela donne i gsind e

Par intégration, on obtient : vi(t) = (gsine— ﬁ)t
(La constante d’intégration est nulle car on lache la
balle sans vitesse initiale.)

82

1500 7

% it -_i)z
On a donc vz—dt 50|tz(t)—2(gsme - t.

(La constante d’intégration est nulle car on lache la
balle depuis z = 0).

3. a. D’aprés la modélisation, on voit que les
paramétres b et ¢ sont négligeables devant le
paramétre a. On en déduit que la courbe obtenue est
de la forme z = at? ol @ = 0,418 m-s™2.

. 1 .
Théoriquement, on trouve z(t) = > (gsinB)t2.
Ces deux expressions sont en adéquation pour

~2(gsino- L)

a= 5 (gsm 0 )

Les hypothéses effectuées sont bien valables ici.
b. Par comparaison, on en déduit I’expression de f':

f=m(gsine-2a)=1,5%x 103N

e On réalise le pointage vidéo du mouvement étudié.
On modélise la courbe (ou les courbes si plusieurs
dimensions) avec une fonction adaptée et on

récupére la valeur des paramétres. Par ailleurs, on
utilise la deuxiéme loi de Newton pour relier la somme
vectorielle des forces avec le vecteur accélération. Par
intégrations successives, on obtient les coordonnées
du vecteur position. Par identification avec les
courbes modélisées aprés pointage, on peut
déterminer les valeurs manquantes du probléme.
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1. a. Pour le point 3, on mesure MoMs = 0,135 m
MoMg, 0,135 o

2At ~ 2x0,067 1,01 m-s™.
De méme, pour le point 5, MuMs = 0,24 m

donc vz =

De méme, pour le point 11, MioMi2 = 0,28 m

MioMip 0,28 o
2At ~ 2x0,067 211 ms™.

b. Voir schéma ci-dessous. Le tracé des vecteurs

donne Ava =0,9 m-s? et Avio=0,65m-s™.

¢. On calcule la norme de I'accélération :

donc vi1 =

_ Avy _ 0,9 _ 2
84 = oAt 2x0,067 6,7 ms
Av 0,65
etaw=—2=—1""—=149m-s>

Donc mas = 0,67 N et maio = 0,49 N.
d. Voir schéma ci-dessous.

2cm «— 0,2m
Tecm «— 0,5m-s-1

1¢cm «— 0,2N
16++
15
14
13+
12+
+
11
-0,6 -0.4

-0,2

Théme 2 ¢ Mouvement et interactions

e.P=mg=0,100 x 9,81 =0,981 N
2.a.P+T=m3d doncT=ma-P

b. Voir schéma ci-dessous.

On mesure Ta=1,1 Net Tio=1,4 N.

c. Oui, les vecteurs T sont orientés vers les points
d’attache, aux imprécisions de mesures et de tracés
prés : la mauvaise appréciation d’une longueur ou
d’un parallélisme peut changer la direction donnée
par le vecteur drastiquement.

e Connaissant le mouvement du systéme étudié, il est
possible de déterminer le vecteur accélération a partir
des différentes positions sur la chronophotographie. Il
faut pour cela déterminer les vitesses en différents
points, puis tracer les variations des vecteurs vitesse.
En utilisant la deuxiéme loi de Newton, on peut faire le
lien entre le vecteur accélération, multiplié par la
masse du systéme, et les vecteurs forces s’appliquant
sur le systéme.

At=0,067 s

6 X (enm)

Py
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Chapitre 11 « Mouvement et forces

Exercices

Exercices 1 a 23 corrigés a la fin du manuel de I'éleve.
Exercices 24 a 26 corrigés dans le manuel de I'éléve.

a. Le systeme {drone} est soumis a :

- son poids I_5, vertical et orienté vers le bas de norme
P=mg;

- la force de poussée I_-'), verticale et orientée vers le
haut de norme F = 0,80 N.

On appligue la deuxiéme loi de Newton au systéme
{drone} dans le référentiel terrestre supposé galiléen :
B+F=m3
En projection sur I'axe (Oy), cela donne —P + F = ma,.

F-P F- F
Onen déduitay=T=ng=E_g

Par intégration par rapport au temps, on obtient :

F
vi(t)=|— —-gJt+ A ou A est une constante.
- m

D’aprés les conditions initiales, v,(0) = 0 m-s™
donc A=0m-s™.

F
L’expression de v, est alors v,(t) = (E —g)t.
On intégre de nouveau par rapport au temps, et on

1(F
obtient y(t) = > (; —g)t2 + B ol B est une constante.

D’aprés les conditions initiales, y(0) = h.
On en déduit B = h et donc I'expression de y devient :

=5 (= ~g)e +h

Exercice 29 corrigé a la fin du manuel de I'éleve.

b. Soit t la durée au bout de laquelle le drone touche

1(F
le sol. On peut écrire :  y(1) = E(E —g)r2 +h=0

. 1 F ) 2h
soit : 5 (g— E)ﬁ =h puist®= g—_f
m

2h
Onenconclut: t= [—=5,6s

m

F
c. Sachant que v,(t) = (; —g)t, la vitesse du drone a
I'instant ou le drone touche le sol est :

F
vy(T) = (E —g)r =-14 m-s?
Le signe négatif signifie que la vitesse est orientée

dans le sens opposé a I'axe (Oy).
Sa norme vaut 14 m-s™.

E} a. La masse de I'air est négligeable devant la
masse de I’eau. Le centre de masse est donc situé
dans I'eau.

b. La masse des voiles et du méat est négligeable
devant la masse de la partie basse du bateau
(coque, machinerie, équipage, etc.). Le centre de
masse est donc situé dans la partie basse.

c. La masse est principalement contenue dans les
anneaux extérieurs plutét que dans la barre centrale.
Par symétrie, le centre de masse correspond au
centre géométrique de I'haltére.

@ 1. a. La norme de la force électrostatique qu’exerce le proton sur I’électron vaut :

Forosee = ———20el_ L € _ 599 10°x "
€ 0

2
1,602 x 10719)
(53 x 1071?)

=8,2x 10N

Cette force est dirigée selon I'axe passant par le proton et I'électron et est orientée de

I’électron vers le proton. Cette force est attractive.

b. La norme qu’exerce I'électron sur le proton est la méme que celle calculée précédemment :

Fe/p,élec = Fp/e,élec = 8,2 x 10° N
proton vers I’électron. Elle est attractive.
c.

2,0 X 108N
<>

Cette force est dirigée selon le méme axe mais orientée du

e >
Fose

2. a. La norme de la force gravitationnelle qu’exerce le proton sur I'électron vaut :

MpMe 1,67x1072"x 9,11 x 10732

Fo/egrav = G—>— = 6,67 X 107 x
e @ (53 x 10‘12)2

=3,6 x10*" N

Cette force est dirigée selon I'axe passant par le proton et I'électron et est orientée de

I’électron vers le proton. Cette force est attractive.

b. La norme qu’exerce I'électron sur le proton est la méme que celle calculée précédemment :
Fepgrav = Fpregav = 3,6 X 104" N Cette force est dirigée selon le méme axe mais orientée du

proton vers I’électron. Elle est attractive.

On ne peut pas représenter cette force sur le méme schéma étant donné que la force
gravitationnelle est de I'ordre de 10" N, tandis que la force électrique est de I'ordre de 107" N.

On ne peut pas représenter avec la méme échelle deux grandeurs dont I'une est 10 fois I'autre.

3. Un atome d’hydrogéne est composé d’un proton et d’un électron.

Sa masse vaut m = my + me = my = 1,67 x 102" kg, comme la masse de I'électron est négligeable
devant la masse du proton. Le poids de I'atome d’hydrogéne est donc : P=mg=1,64x 102 kg

84
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EF1 1. Un référentiel galiléen est un référentiel dans
lequel un systéme, qui n’est soumis a aucune force
ou a des forces dont la somme est nulle, est au
repos ou en mouvement rectiligne uniforme.

2. a. Le référentiel ne peut pas étre considéré
comme galiliéen car le mouvement est accéléré.

b. Le référentiel ne peut pas étre considéré comme
galiliéen car le mouvement est ralenti.

c. Le référentiel peut étre considéré comme galiliéen
car le mouvement est rectiligne et uniforme.

@ a. La table est immobile par rapport au référentiel
terrestre qui est galiléen. La table peut donc, elle aussi,
étre considirée comme un référentiel galiléen.

b. La trousse est soumise a son poids 1_5, dirigé

selon 'axe vertical et orienté vers le bas, et la R

réaction normale de la table _R), dirigée selon

|’axe vertical et orientée vers le haut.

c. La trousse est immobile donc on peut

appliquer la premiére loi de Newton. 7

d. On en déduit : P+R=0
soit, en projection verticale : R-P=0
d'ouP=R=mg=0,300 x 9,81 = 2,94 N.

. . . ~ . =4
E a. La pierre de curling est soumise a son poids P,
dirigé selon I'axe vertical et orienté vers le bas, et la

réaction normale du sol _R), dirigée selon I'axe vertical
et orientée vers le haut.

b. Les deux forces s’exercant sur la pierre sont
dirigées selon I'axe vertical. Comme la pierre ne
s’éléve pas ou ne s’enfonce pas dans le sol, on en
déduit que la somme vectorielle de ces deux forces
est nulle, d’aprés la premiére loi de Newton. On a
donc P+R=0 soit, en projection verticale R—P=0
douP=R=mg=177 N.

c. La somme vectorielle des forces est nulle. Comme
la pierre a été lancée, elle posséde une vitesse
initiale non nulle, d’aprés le principe d’inertie, elle est
donc animé d’un mouvement rectiligne et uniforme.

Exercice 34 corrigé a la fin du manuel de I'éléve.

EE a. On se place dans le référentiel géocentrique
supposé galiléen. Le satellite est animé d’un
mouvement circulaire et uniforme.

b. Le satellite n’est soumis qu’a une seule force, la
force d’interaction gravitationnelle exercée par la
Terre F‘T/s avec :

5,97 x 10%* x 200 x 103

TS = 6,67 x 107 x
(rr +h)

Frs=1,81 x 10° N
Cette force est dirigée selon I'axe Terre-satellite et
orienté du satellite vers la Terre donc selon —u.
On peut écrire l_-'}/s = —Fus U.
c. D’aprés la deuxiéme loi de Newton appliquée au
satellite, on peut écrire ?T/S = mé), ou 2 est le vecteur
accélération du centre de masse du satellite.
La norme du vecteur accélération vaut alors :

Frs  1,81x10°

a=—=="—"-==9,06ms?
m 200 x 10

Le vecteur accélération est dirigée selon —u.

Fis=G 5
3 3
(6378 x10” +250 % 10%)
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Exercice 36 corrigé a la fin du manuel de I'éléve.

Pour les systémes suivants, le point qui
représente le mieux le centre de masse est :

1. Situation 1 : le point A qui est le centre
géomeétrique du cube.

2. Situation 2 :

a. le point E qui est le centre géométrique du cerf-
volant ;

b. le point C qui est le centre de masse du surfeur
muni de sa planche ;

c. le point D qui est le centre de masse de I'ensemble.
3. Situation 3 : le point G qui est situé a proximité de
la téte beaucoup plus lourde que le manche.

Exercice 38 corrigé a la fin du manuel de I'éleve.

EL] a. Le systéme est soumis :

- a son poids I_5, dirigé selon I'axe vertical et orienté
vers le bas, de norme P=mg=4,8 x 9,81 =47 N;;
- a la force de tension de la corde de gauche T ,
dirigée selon I'axe de la corde de gauche formant un
angle 6 avec I'horizontale et orientée vers la gauche ;
- a la force de tension de la corde de droite ?d,
dirigée selon I'axe de la corde de droite formant un
angle 6 avec I'horizontale et orientée vers la droite.

b. Le systéeme est immobile, donc d’aprés la premiére

loi de Newton, on peut écrire 7'g + 7’d + E’ =6.

On projette selon I'axe horizontal : Tscos6 — Tecosb = O

On peut en déduire que la force de tension de la corde

estlaméme: Ta=Tg=T

On projette selon I'axe vertical : Tsin6+ Tsin6—P =0
_ mg 48x981 5

2sin@  2sin®  2sin(8,0°) 1,7 x10°N.

c. Quand 6 tend vers O, la force T tend vers I'infini.

donc T =

ITi 1. a. La voiture est soumise :
- a son poids 73, dirigé selon I'axe vertical et orienté
vers le bas, de norme P=mg =1,23 x 10* N ;

. - Fr P
- a la réaction normale du sol N, dirigée selon (Oy) et
orientée vers le haut ;

- a la force de frottement]_)”, dirigée selon (Ox) et
orientée vers le haut de la pente.

X
e N

b. La voiture est immobile donc d’aprés la premiere

loi de Newton, on peut écrire : I_5+ N+7‘=6
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Chapitre 11 « Mouvement et forces

On projette selon I'axe (Ox) :
On en déduit :
f=Psina=mgsina=1 250 x 9,81 X sin(16,7°)
f=3,52x10°N

On projette selon I'axe (Oy) :
On en déduit :

N = Pcosa = mgcosa =1 250 x 9,81 x cos(16,7°)
N=1,17 x 10* N

2. La voiture est désormais soumise :

- a son poids I_5, dirigé selon I'axe vertical et orienté
vers le bas, de norme P=mg =1,23 x 10* N ;

—f+ Psina=0

N — Pcosa =0

N
- & la réaction normale du sol N, dirigée selon (Oy) et
orientée vers le haut ;

- a la force de frottement?; dirigée selon (Ox) et
orientée vers le bas de la pente ;

- a la force de tension du cable 7’, dirigée selon I'axe
du cable formant un angle 6 avec I'axe (Ox) et
orientée vers le haut de la pente.

La voiture est animée d’un mouvement rectiligne et
uniforme donc d’aprés la premiére loi de Newton, on

peut écrire : I_5+N)+7‘+7'=6
On projette selon I'axe (Ox) :  f'+ Psina— TcosB =0
On en déduit : f=TcosB — mgsina

f=6,60 x 10° x cos(10,0°) - 1 250 x 9,81 x sin(16,7°)
f=2,98 x 10° N

On projette selon I'axe (Oy) : N + Tsin@ — Pcosa =0

On en déduit : N = mgcosa — Tsin®

N =1 250 x 9,81 x cos(16,7°) — 6,60 x 10° x sin(10,0°)
N=1,06 x 10* N

Ay

m a. Le lustre est soumis :

- a son poids I_5, dirigé selon I'axe
vertical et orienté vers le bas, de ) )

norme P=mg=35x981=34N; Td\|/Tq

- a la force de tension du cable de 0 >

gauche Tg, dirigée selon I'axe du cable M X
de gauche formant un angle a avec la
verticale et orientée vers le haut ; P)

- a la force de tension du cable de

droite?d, dirigée selon I'axe du cable

de droite formant un angle a avec la

verticale et orientée vers le haut.

b. Le lustre est immobile donc, d’aprés la premiére

loi de Newton, on peut écrire : _T)g + _T)d + I_5= 6

On projette selon I'axe (Ox) : Tegsina — Tgsina = 0

On peut en déduire que la force de tension de la

corde est la méme : Ta=Tg=T

On projette selon I'axe (Oy) : Tcosa + Tcosa— P =0
mg 3,5%x9,81

2cosa 2cosa 2 X cos(5,0°) 17N.

donc T =

86

EE a. Le ballon est soumis :

- a son poids I_5, dirigé selon I'axe vertical et orienté
vers le bas, de norme :
P=mg=10x10°x%x9,81=0,10N;

- a la force de tension du fil _T), dirigée

selon 'axe vertical et orientée vers le

bas ; F :[0,1 N
- a la somme des forces pressantes

?A, dirigée selon I'axe vertical et

orientée vers le haut, de norme

Fa=0,4 N.

b. Le ballon est immobile donc

d’aprés la premiére loi de Newton, on )

- - - - P
peut écrire : P+T+F,=0
En projetant selon I'axe vertical, cette
expression donne: —-mg—-T+ Fa=0 7

donc T=Fa—mg
T=0,4-10x10°%x9,81=0,3N
c. Voir schéma ci-contre.

m 1. a. Le parachutiste est soumis :

- a son poids I_51, dirigé selon I'axe vertical et orienté
vers le bas, de norme :

P;=mig=70,0%x 9,81 =687 N;

- a la force de tension du parachute 7’1, dirigée selon
|’axe vertical et orientée vers le haut.

b. Le parachutiste est animé d’un mouvement
rectiligne et uniforme donc d’aprés la premiére loi de

Newton, on peut écrire : I_51 + 7’1 =0

En projetant selon I'axe vertical, cette expression
donne —P; + T1 =0 donc T = P. = 687 N.

2. a. Le parachute est soumis :

- a son poids I_52, dirigé selon I'axe vertical et orienté
vers le bas, de norme :

P2 =m2g=15,0%x 9,81 =147 N;

- a la force de tension du parachutisteT’z, dirigée
selon 'axe vertical et orientée vers le bas ;

- a la force de frottement avec I’airj’z, dirigée selon
|’axe vertical et orientée vers le haut (opposée au
mouvement).

b. D’aprés la troisieme loi de Newton, la force
exercée par le parachute sur le parachutiste est
opposée a la force exercée par le parachutiste sur le

parachute et est de méme norme : 7’2 = —_T)1

Donc la force exercée par le parachutiste sur le
parachute vaut T. = T1 = 687 N. Cette force est
orientée selon I'axe vertical et vers le bas.

c. Le parachute est animé d’un mouvement rectiligne
et uniforme donc d’aprées la premiére loi de Newton,
on peut écrire : 32+ _T)z +7’2 =0

En projetant selon I'axe vertical, cette expression
donne : —P-To+f2=0

donc fo = P2+ To =687 + 147 = 834 N.

m 1. a. Le systéme est soumis :

- a son poids I_51, dirigé selon I'axe vertical et orienté
vers le bas, de norme :
P1=mig=65,0x% 9,81 =638N;
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- a la réaction normale de I'eau _R)l, dirigée selon
|’axe vertical et orientée vers le haut ;

- a la force de frottementj”l, dirigée selon I'axe
horizontal et orientée dans le sens opposé au
mouvement, de norme f1 = 500 N ;

5
- a la force de tension du céble T,, dirigée selon 'axe
du cable formant un angle a avec I'axe horizontal et
orientée dans le sens du mouvement.

y

~.l

=Y

b. Le systéme est animé d’un mouvement rectiligne
et uniforme donc d’aprées la premiére loi de Newton,

Py+Ry+7,+T,=0
—f1 + Ticosa =0

on peut écrire :
On projette selon I'axe (Ox) :
On en déduit : T1=E=m=508N
Ainsi, la force _T)l est dirigée selon I'axe du cable,
orientée de Laurence vers le bateau et a pour norme
T1 =508 N.

2. a. Le systeme est soumis :

- a son poids I_52, dirigé selon I'axe vertical et orienté
vers le bas, de norme :

P> =mog=700x 9,81 =6,87 x 10*N ;

- a la réaction normale de I'eau _R)Q, dirigée selon
|’axe vertical et orientée vers le haut ;

- a la force de frottementfé, dirigée selon I'axe
horizontal et orientée dans le sens opposé au
mouvement, de norme f> = 2,50 x 10 N ;

- a la force de tension du cable _T)2, dirigée selon I'axe
du cable formant un angle a avec I'axe horizontal et
orientée dans le sens opposé au mouvement ;

- a la force de poussée du bateau I_-')Q, dirigée selon
I’axe horizontal et orientée dans le sens du
mouvement.
Ay

]
-ty
)
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b. D’aprés la 3¢ loi de newton, la force qu’exerce
Laurence sur le cable est opposée a la force
qu’exerce le cable sur Laurence mais de méme

T,=-T,

Ainsi, la force _T)z est dirigée selon I'axe du cable,
orientée du bateau vers Laurence et a pour norme
To=T1 =508 N.

c. Le systéme {bateau} est animé d’un mouvement
rectiligne et uniforme donc d’aprés la premiére loi de
Newton, on peut écrire : 1_52 + _R>2 +72 + 7’2 + 1_52= 0
On projette selon I'axe (Ox) : —f2 — Tocosa+ F2 =0
On en déduit : F2 = f2 + Tocosa

F,=2,50 x 10° + 508 x cos(10,0°) = 3,00 x 10° N
Ainsi, la force I_-')2 est dirigée selon I'axe horizontal,

orientée dans le sens du mouvement et a pour
norme F> = 3,00 x 10° N.

norme :

EE 1. a. Le poids de la bille d’acier vaut :
P=mg=1,1x101%x9,81=1,1N
b. Au moment ol on lache la bille, elle est soumise :

- a son poids I3>, dirigé selon I'axe vertical et orienté
vers le bas, de norme P=1,1 N ;

- a la somme des forces pressantes IT:)A, dirigée selon
|’axe vertical et orientée vers le haut, de norme
Fa=0,14 N ;

- a cet instant, il n’y a pas de forces de frottement.
Voir schéma en page suivante.

c. D’aprés la deuxiéme loi de Newton, on peut écrire,

aprés avoir laché la bille : P+ FA =ma

On projette selon I'axe (Oy) : -P+ Fa=ma
-P+F, -1,1+0,14

doua= Ao =-8,5m-s2.

T 11x107t
L’accélération est non nulle et négative. Elle est
donc dirigée vers le bas et la bille coule.

2. a. Le poids de la bille de liege vaut :
P=mg=28x10%%x9,81=2,7%x102N

b. Aprés avoir laché la bille, elle est soumise :

- a son poids I3>, dirigé selon I'axe vertical et orienté
vers le bas, de norme P=2,7 x102 N ;

- a la somme des forces pressantes FA, dirigée selon
|’axe vertical et orientée vers le haut, de norme
Fa=0,14 N ;

- a cet instant, il n’y a pas de forces de frottement.
Voir schéma en page suivante.

c. D’aprés la deuxieéme loi de Newton, on peut écrire,

au moment ol on lache la bille : P + I_-')A =ma

On projette selon I'axe (Oy) : —P + Fa=ma
—P+Fa _ 20,027 +0_,314 40 mes2.

2,8x10

L’accélération est non nulle et positive. Elle est donc

dirigée vers le haut et la bille remonte.

3. Pour que la bille reste immobile, il faudrait une

accélération nulle.

D’aprés la premiére loi de Newton :

I_5+I_-')A =0 soit—P+F\=0

donc P=mg = Fa= 0,14 N.

On en déduit :

d'olia =
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1. b.

Fa

:[0,1 N

m D'aprés la deuxiéme loi de Newton :  SF=m3
Fqx +F: 2-1
— T:) F_) it a, = lxm2x=_=1m'3_2
a. ma= 1+ 2 SOl Fio+Fo.
a,=—=—2=0m-s?2
Fix +Foy +F -1
R N N axzmz_z_l m.s‘z
_ f m 1
b.ma=F; +F, soit Fiy+Foy+Fay  15-05 B
a,= - = =1m-s
m 1
_ Fix+Fp _ -1-1 2
c.ma=F, +F, soit ST TTooTEme
. - 2 F1,+Fs,  05-1,5 .
a,= Dp¥hey _ 907ds 4 m.g2
m 1

Exercice 47 corrigé a la fin du manuel de I'éleve.

IT! a. Par définition, une accélération est une
variation de vitesse en une durée donnée.

Le vecteur accélération est dirigé selon I'axe de la
pente, orienté vers le haut de la pente, dans le sens
opposé a (Ox) et a pour norme 3,0 m-s=2,
Onadonca,=-3,0m-s? et a,=0m-s2

2

88

2. b.

R X’
>

i0,0Z N

=)

b. Le skieur est soumis :

- a son poids 73, dirigé selon I'axe vertical et orienté
vers le bas, de norme P=mg =785 N ;

- a la réaction normale du sol N, dirigée selon (Oy) et
orientée vers le haut ;

- a la force de frottementj‘, dirigée selon (Ox) et
orientée vers le haut de la pente, dans le sens
0opposé au mouvement.

-— X
~—

On utilise la deuxiéme loi de Newton dans le
référentiel terrestre supposé galiléen, sur le systéme
{skieur} : P+f+N=ma
On projette selon I'axe (Ox) :
On en déduit :

f=mgsina —m a, = 80 x 9,81 x sin(15°) + 80 x 3,0
f=4,4%x10?N

—f'+ Psina = may
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EE a. La voiture est soumise :

- a son poids I_5, force verticale dirigée

vers le bas de norme P =mg ;

- a la réaction normale du sol N, force

verticale dirigée vers le haut ;

- a la force de frottement des roues avec -

le sol F‘, force horizontale dirigée dans le &

sens du mouvement.

b. La deuxiéme loi de Newton s’écrit :
P+N+F=ma

Selon I'axe vertical, on peut écrire =P + N =0

puisqu’il n’y a pas d’accélération verticale. Les

forces P et N se compensent.

On projette selon I'axe horizontal :  F=ma

donc F =950 x 3,2 = 3,04 x 10° N. Cette force est

horizontale et dirigée dans le sens du mouvement.

dv.
C.ay=—

ot donc par intégration :

F
Ve = Et + A oU A est une constante.
D’aprés les conditions initiales, vi(t=0)=A =0
F
donc v,(t) = Et'
Au bout de t1 = 5 s, la vitesse vaut :

F.__304x10°

— — o1
t1 = 950 x50=16m's

Vx(tl) =

. dx
d. De méme, v, = —

dt
F .
%F + B ou B est une constante.

D’aprés les conditions initiales, x(t=0)=B =0

donc par intégration :

X =

F
— 42
donc x(t) 2mt .
Au bout de t1 = 5 s, la distance parcourue vaut :
3,04 x 103

2
53950 x5,02=40m

F
x(t) = 2m tf =

i) a. Le systéme est soumis :

- a son poids I_5, dirigé selon I'axe vertical et orienté
vers le bas, de norme :
P=mg=120x%x9,81=1,18 x 10°N;

5
- a la force de poussée F, dirigée selon |’axe vertical
et orientée vers le haut.

On applique la deuxieme loi de Newton : P+F=ma
Pour que le systéme décolle, il faut que I'accélération
soit positive le long de I'axe vertical ascendant. Il faut
donc a, > 0 ce qui implique P, + F, > O. En projection
le long de I'axe vertical, cette expression donne F > P
soit F > 1,18 x 10° N. La norme de la force de
poussée doit donc étre supérieure a 1,18 x 10° N,

b. D’aprés la deuxiéme loi de Newton, on peut écrire

P+ F=ma.On projette cette équation le long de

|’axe vertical: —-P+ F=ma
On en déduit :
3 3
F-P 1,66x10°-1,18x10
a=—m= = 4,00 m-s3
m 120

dv,, L .
c.a, = d—; =a donc par intégration :

v(t) =at+ A ou A est une constante.
D’aprés les conditions initiales, v,(t=0)=A =0
donc v,(t) = at.
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. d L .
De méme, v, = d—f donc par intégration :

y(t) = th + B ol B est une constante.
D’aprés les conditions initiales, y(t=0)=B=0
donc y(t) = gr?

d. L’ascension est terminée au bout d’un temps

t; = 3,0 s. A cet instant, I'altitude atteinte vaut

4,00 _
t2 = — X 3,02 = 18 m et la vitesse vaut

[Fl a. Le systéme est soumis :

-
- a son poids P, force y
verticale dirigée vers le
bas de norme P =mg ; N
- a la réaction normale de j F

la route N), force verticale
dirigée vers le haut ;
- a la force de frottement

o - G
i

oy

I_-'), force horizontale

dirigée dans le sens opposé au mouvement.

On néglige les frottements avec I'air.

b. La deuxiéme loi de Newton s’écrit :
BiN+P=ma

Selon I'axe (0y), on peut écrire —=P + N = 0 puisqu'’il

n'y a pas d’accélération verticale. Les forces PetN

se compensent. On projette selon I'axe (Ox) :

-F=ma, soita,=—.
m
dvy dx s .
ay = m et v,= p donc par intégration :

-F -F
v,=—t+A et x=—t2+At+B
m 2m
ol A et B sont des constantes.
D’aprés les conditions initiales :
V(t=0)=A=w et x(t=0)=B=0
Les équations horaires de la vitesse et de la position

_F -F
sont donc : vi=—t+vo et x(t)=—t°+ vot
m 2m

c. Le vélo est a I'arrét aprés une durée t au bout de

. . -F

laquelle la vitesse est nulle, soit v,(t) = P +v=0
myv,

etdonc t= TO'

d. On remplace dans I’équation de x, on obtient :

2 2
-F (mv mv, my,
=_(_0) + v x Mo _ Mo

1) =d 2m\ F

P , . mv,
On peut donc en déduire I'expression F = 2—d°.
En utilisant les valeurs données dans I’énoncé, la

norme de la force de frottement vaut alors :

[F] a. Le systéme est soumis :

" =q . .. Pl
- a son poids P, force verticale dirigée vers le bas de
norme P =mg ;

N
- a la réaction normale du support N, force verticale
dirigée vers le haut ;

- a la force de frottement?; force horizontale dirigée
dans le sens opposé au mouvement (selon —(Ox), ici).
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b. La deuxiéme loi de Newton s’écrit P + N +J_‘)'= ma.
Selon I'axe (0y), on peut écrire —=P + N = 0 puisqu'’il

n'y a pas d’accélération verticale. Les forces PetN

se compensent.

On projette selon I'axe (Ox) : r_n—f

—f=ma, soita,=

donc par intégration :

- -F )
vi==t+A et x=—t*+At+B
m 2m
ol A et B sont des constantes.
D’aprés les conditions initiales :
v(it=0)=A=w et x(t=0)=B=0
Les équations horaires de la vitesse et de la position

i ... -F
c. Par comparaison, on en déduit o -0,6 m-s™

dotf=06x2xm=025N et vo=50ms™
d. D’apreés le graphique, la boule touche la paroi au
bout d’un temps t1 = 0,4 s.

A cet instant, la vitesse de la boule vaut :

-0,25

6,209 x0,4+5,0=4,5m-s*
e. Graphiquement, on retrouve les valeurs de vo et v1
grace a leur tangente :

Vi = V(1) = _Eftl + Vo=

xg—xp 0,96 ~
Vo= =—=53m-s?
° T tg-ta 0,18
xp-xc 1,90-1,52
etv, =—2—C= =4,2 m-s?

tp—tc  0,40-0,31
On retrouve les résultats attendus aux incertitudes

- -F
sont donc : Ve = —ft +vo et x(t)=—t>+ vot de mesure prés.
m 2m
Ax{enm) D
1,804
x(t) =-0,6t2+ 5,0t
1,60+ ou x est exprimé en metres C
et ten secondes
1,404
1,204
1,004 B
0,801
0,604
0,404
0,204
A t{ens)
0 T T L} L] T ) T ] ;
0 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40
EE] a. La bille A subit : En projection sur 7, cela donne :

- son poids P=mg:
- la tension du fil _T’;
- la force électrique

1 q2 2
47'[80@’
avec AB = 2¢sin®.
b. D’aprés la premiére loi de
Newton, comme le systéme
est au repos dans le
référentiel terrestre supposé
galiléen, P+T+F=0.

Fe-

TSP S—— o

90

1 q2 i 1 q
——————+Tsin@=0 douT= —_
4meg 42 sin® 8 4meg 42 sin® @

En projection surf, ona:
-mg + Tcos®=0,dou T= m_g.
cos 6
92 m

Cela donne : — =
4meg 42 sin®e cosB

d’ol q=z= -t
——co0s 0
47'[50

c. On calcule |g| = 4,3 x 108 C.
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m Trajectoire
4+ o = \\
//I/ \\
4 \
- 3 1 / . \\
y \
£ / \
c / \
L | \
>, 2] \
\‘
\
1 \
\‘
\
\
0 \
0 2 4 6 8
X (en m)

a. * Calcul de la variation du vecteur vitesse : c’est
la deuxieme loi de Newton qui est utilisée, dans sa

. . N N At — .2
version discréte Av = - F, ou F est la somme des

forces subies.

e Calcul du vecteur vitesse a la date t + At : on
utilise AV(t) = V(t + At) — V(t).

e Calcul de la position a la date t + At : on utilise

> OM(t + AD) — OM(t)

v(t) = Y ve—

b. ylpl >= 0 assure que la boucle tourne
tant que le projectile est au-dessus du sol.

¢. On ajoute portee=max (x).

15 on étudie le skieur
modélisé par son centre
de masse G dans le
référentiel terrestre
supposé galiléen. Il subit

" =4 - .
son poids P, la réaction

normale de la piste N et
les frottements de la
pistej’.

En notant & I’accélération du systéme dans le
référentiel d’étude, la deuxiéme loi de Newton s’écrit

- - - -
ma =P+ N +f. En projection sur I'axe (Ox), cela
donne ma, = —f'+ mgsin®.

Si le skieur démarre immobile, alors on peut écrire
I’équation horaire de sa vitesse sur I'axe paralléle a

la pente, v, = (g sin® - %)t puis sa position sur cet
axe en prenant comme origine la position de
démarrage, x = é (g sin® - %)t?

La longueur L est parcourue au bout de la durée tt

2L

1 f
telle ueL=—( sin® ——) 2, dolti= |——.
a 2 g m/ ' gsine—é

f
La vitesse a cette date-la est vr = (g sin® — E)tf, soit
- 2L( sin® — i)
Vi = g )
La norme de la force de frottements de la piste est

2
donc /= mgsin® % - 4,9x10%N.
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@ 1. On étudie le sapin modélisé par un point dans
le référentiel terrestre supposé galiléen. Il subit son
poids P= mgf et la tension du fil 7. D’aprés la

. . - - b=d N
deuxiéme loi de Newton, ma =P+ T, ou a est
I’accélération du sapin dans le référentiel terrestre.
En projection sur un axe vertical ascendant, cela

N m
donne O =-mg + TcosB=0,d'ou T = ﬁ.
a. L’accélération a pour norme, dans ce

— — a2
cas,a—?)y6><12 2,3 m-s™,

En projection sur un axe horizontal dans
le sens de la marche, la deuxiéme loi de
Newton donne :

ma, = Tsin® avec a, = a.

On obtient donc ma = m—gsine
a cos 6

d’ol tan® _§ puis 6= 13°.

b. En projection sur un axe horizontal
dans le sens de la marche, la deuxiéme
loi de Newton donne :

ma, = -Tsin®@ avec a, = —-a.

On peut obtenir v, = —at + vo

avec vo = 100 km-h™ = 27,8 m-s™.

. 1 .
Puis x = - Eat2 + vot, distance parcourue
pendant le freinage.
L’arrét a lieu a la date ts telle que vi(t:) = O
d’ol tr = Va_o. La distance d’arrét est donc :

1 Vo2
L = x(t) = — Zat? + votr = —.
x(tr) 2af ofr = >

2
Comme L = 100 m, on en déduit a = % =3,9 m-s?2.

. .. mg .
On obtient, comme précédemment, -ma = — ﬁsme

N a .
d’ol tan® =§ puis 6 = 21°.
2
. . v
2. L’accélération est alors centripéte, de norme a = Iy
avecv=70km-h*=19 m-s™.
Le méme raisonnement que précédemment en

projetant la deuxiéme loi de Newton sur le vecteur

IS ~ a
normal du repére de Frenet donne de méme tanb = —

g
puis 6 = 21°.

1. On étudie la personne dans le référentiel
terrestre supposé galiléen. Elle subit son poids

P= m§ et la réaction normale du support N. La
personne étant immobile dans un référentiel galiléen,
P+N =6, d'ou N = —-P. D’aprés la troisieme loi de
Newton, la force exercée par la personne sur le pése-
personne est —N = P. La norme de cette force est
donc mg, ce qui fait que le pése-personne affiche
bien la masse m de la personne.

2. a. Cette fois-ci, on applique la deuxiéme loi de
P+N=ma douN=ma, - P.

Le pése-personne subit donc la force N= -ma, + I_5,
de norme m(g + aa).

Newton :

(g+a1)

La masse affichée est donc m =1,0 x 10% kg.
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b. Quand I'ascenseur est
en mouvement rectiligne
et uniforme, tout se passe
comme s’il était a 'arrét,
donc le pése-personne N
affiche bien m. N
c. Lorsque I'ascenseur > N
freine en arrivant en haut,
avec une accélération

- - o
a, = —a4, on procede de la
méme fagon qu’a la
question 2a : le pése-

l.et2.b. 2.a. 2.c

personne subit la force —ﬁ = —m52 + 1_5, de norme
m(g — a2).
(g-an)

La masse affichée est donc o = 85 kg.

d. Lorsque le cable est rompu, si I’accélération est
53 =§, alorsl_5+ﬁ=m53=m§donneﬁ=6 :la
balance affiche O kg.

2 a. L’accélération du

N 5 V2 N
systéemeest: a= & Un
ol R est le rayon de la
trajectoire et v la norme de
la vitesse de la moto.
b. Le systéme subit son \

poids P=mg et la réaction »
normale du support N. e

La deuxiéme loi de Newton STERREE
dans le référentiel terrestre s’écrit ma =_F7+N, d’ol
N=ma-P=m(3-g). En projection sur U,, cela

N=m(a—g)=m(§ —g)

Le contact existe tant que N > 0, c’est-a-dire tant que
2

v . - . .
rig g. La vitesse minimale a laquelle doit rouler le
motard est donc vmin = 4/ RE.

donne :

c. Le rayon de la trajectoire semble voisin de R =2 m.

On calcule donc vmin = 4 m-s™, voisine de 16 km-h™.

@ 1. a. On étudie la bille ramenée a son
centre de masse G dans le référentiel terrestre

supposé galiléen. Elle subit son poids P= m§

\‘“l

et la force de frottement]_)‘.
La deuxieme loi de Newton s’écrit donc :
av - = Ldv 5 ko
E=P+f soﬂa:g—av.

L. . S ks mo
On peut écrire aussi ceci : S m (v— ?g),
qui est bien de la forme proposée avec t =%

ol

m

t > m -
et v,=—28.
=18 )
. - ~ ~
T est en secondes puisque — v est homogene a une
T

accélération. Et v, est en métres par seconde
puisque c’est homogéne a une vitesse.
b. D’aprés les expressions du cours, on en déduit

v=v,+Ae T,
At=0s,v=0,douA=-v, puisv=v,(1-e").
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2. a. On détermine graphiquement Tt comme
I’abscisse de I'intersection de la tangente a I'origine
avec I'asymptote horizontale : t=0,09s

On détermine v, comme I'ordonnée de I'asymptote
horizontale : v,=0,9 m-s?

b. On en déduit k = ? =2x 102 kg-s.

= - 4 —>
@ 1. La goutte subit son poids P=mg = gnphﬁg, la

force de frottement,?’= —611an et la force électrique
F=qE.

2. Si la goutte est en mouvement rectiligne et uniforme
dans le référentiel du laboratoire supposé galiléen,

> S o o 4 - - - =
alors: P+f+F=0 dol gnphﬁg —6nnrv + gE = 0.
En projection sur I’axe (0Oz), cela donne :

4
gﬂpnl"gg —6nnr. +gE. =0
ot v = (4
dolv. = Sy (3 nrp,g + qEz)
3. a. Si le champ électrostatique est nul, alors la

1 (4
vitesse s’écrit vo = — (gnﬁphg), d’oli I'on déduit :

ernr
Onv,
r= |20
2p,8

b. La goutte est immobile si la
force électrostatique est vers
le haut. Comme elle est
chargée négativement, cela

impose que E soit orienté vers
le bas. La borne A doit donc
étre la borne positive du
générateur.

La relation de la question 2
avec v. = O donne :

4
4 =nrip.g
“nrprg + qEo d’oll q = — —=.
3 Eo

4. Posons, pour fixer les idées, El = EJ%, vertical vers
le bas. La relation de la question 2 donne :

v —i(iﬂr3 + E)etv —i(iﬂr3 E)
2~ 6mr\3 Png ks >~ 6mr\3 P8~ GEs

En additionnant ces deux relations, il vient :

(v, +vo,)
4Phg ’

En soustrayant la deuxieme relation a la premiére, il

2 /4
+ =—]\ - "ol =
Vis ¥ Ve = o (3 Trr3phg) dour
vient : S (29E1)

: Vi, — Vo, = ey qca

_ 3mrvy, —vo.)

Onen déduit: q B
1

Exercice 61 corrigé a I'adresse hatier-clic.fr/pct338

@ 1.1. D’aprés la deuxieme loi de Newton, la somme
vectorielle des forces subies par un systéme est
égale au produit de sa masse par son accélération
dans un référentiel galiléen. Appliquée a la balle dans

S
le référentiel terrestre, ne subissant que la force F

. P - - < -
dans son trajet entre A et B, cela s’écritma =F, ou a
est I'accélération de la balle.
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1.2. Entre A et B, I’accélération de la balle est un
vecteur constant et sa trajectoire une ligne droite,
donc la balle est en mouvement rectiligne et
uniformément accéléré.

2.1. En notant v le vecteur vitesse de la balle, on

-

. - dv
peut écrire a = a

2.2. L’accélération étant constante, elle est égale a
I’accélération moyenne entre A et B, de norme :

3. On en déduit F=ma = 20 N.

Le poids de la balle ayant pour norme P=mg = 1,6 N,
il est inférieur en norme au dixieme de F, ce qui peut
justifier qu’on le néglige.

@ On étudie le solide de masse m dans le
référentiel terrestre supposé galiléen. |l subit son

poids P= m§ et la force de rappel du ressort F de
norme F = ké&. Le systéme étant a I’équilibre, on

applique la premiére loi de Newton : F+P=0
d’ol I'on déduit, en projection verticale :

kéo —mg =0 puis£o=m7g.
Le tracé de & en fonction de m donne donc une droite

qui passe par I’origine, de coefficient directeurf.

Sur le graphique, on détermine ce coefficient directeur :
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m 1. Le débit massique total est :
D=270+2x1,8x%x10%= 3,87 x 10° kg-s™
Pendant At = 2,4 s, la masse éjectée est donc :
me = DAt = 9,3 x 10° kg soit 9,3 tonnes.
La masse au décollage étant m = 750 a 780 tonnes,
cette masse éjectée est donc négligeable devant la
masse initiale de la fusée. On peut donc considérer
que la masse totale de la fusée est constante
pendant la durée de I’étude.
2. On mesure sur la photo y1 = 2,0 cm, puis
ys = 2,7 cm. Comme y1 = 30,1 m en réalité, on en
déduit ys = 30,1 x % =41 m.

L _333-301 1
3.1. On peut écrire vo = —1’00_ 020~ 4,00 m-s™.
C’est bien ce qu’on lit sur le graphique a 0,6 s.
3.2. On modélise les points du graphique par une
droite. L'accélération de la fusée est le coefficient

. . 15 L
directeur de la droite et vaut 55> 6,8 m-s2, voisin

de 7 m-s2,

3.3. Le vecteur accélération est vertical

car le mouvement est vertical, et orienté
vers le haut car la vitesse verticale croit I
au cours du temps.

4. Voir schéma ci-contre. AR R

Bt

5. La fusée subit son poids E’, vertical et
vers le bas, de norme P = mg, et la force
de poussée I_-'), verticale et vers le haut.
La deuxiéme loi de Newton s’écrit :
ma=P+F doul'on déduit F = ma - P, 3
de norme F=ma + mg =1,3 x 10" N.
C’est bien cohérent avec les 13 000 kN
de poussée annoncés.
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Chapitre 12 « Mouvement dans un champ uniforme

Voici des exemples de courbes obtenues :

Dans cet exemple la modélisation linéaire de la courbe x(t) donne :

La modélisation parabolique de la courbe y(t) donne :

1. On choisit le modeéle linéaire car a I'instant initial,
I’origine a été placée au niveau de la position de la
balle. Les coordonnées de la balle sont donc nulles a
cet instant.

2. En utilisant le tableur, on détermine les

coordonnées du premier point (indice O) et du
X1 —X0

deuxiéme point (indice 1) : vo, = =2,244 m-s™*
et vo, =y1A_ty° = 4,225 m-s™ dans notre exemple.

3. Les coordonnées théoriques du mouvement sont :
)C(t) = VOxt

1
L/(t) = —Egtz + Vot

Les coordonnées numériques théoriques du
mouvement (sur cet exemple) sont :

x(t) = 2,244t
{y(t) =-4,91t2+ 4,225t
Les coordonnées numériques des modéles
numeériques (sur cet exemple) obtenues
précédemment sont :

{ x(t) = 2,213t
J(t) =—5,098t2 + 4,155t + 9,874 x 10>

Les valeurs sont trés proches :
2,244 = 2,213 -4,91 =~ -5,098
4,225 = 4,155 0=~9,874 x 103

9%

x(t) = 2,213t
3(t) = -5,098¢2 + 4,155¢ + 9,874 x 102

La deuxiéme loi de Newton permet donc de retrouver
les coordonnées du mouvement.

¢ Si on compare les solutions obtenues avec la
deuxiéme loi de Newton avec les modéles
numeériques obtenus grace au logiciel de pointage, on
s’apercoit que les équations horaires sont trés
proches. On en déduit que la deuxiéme loi de Newton
permet de prévoir convenablement le mouvement du
ballon.

¢ On peut entrevoir deux sources d’erreurs entre
théorie et expérience.

La premiére est d’ordre expérimental. Le pointage
est une chose délicate a réaliser sans erreur de
pointage. Pour se rendre compte de cette erreur, il
suffit de regarder les équations horaires obtenues
par les autres groupes. Avec le méme
enregistrement, sans erreur de pointage, chaque
binbme devrait trouver les mémes résultats.

La deuxiéme est liée au modéle choisi et, plus
exactement, a I’absence de frottement de toute
nature. Méme si le ballon se déplace doucement,
I"air agit sur le ballon et le freine
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Le pointage de la vidéo donne des tableaux de
mesures. Dans le tableur, on crée les variables v, et
vy, puis la norme v. On calcule v, en faisant le calcul

v, (t+ At) — v, (t + At) .
vi(t) = = 2At" . En langage Latis-Pro, cela
donne, dans I’'exemple utilisé :

‘ﬂ 348 | Fx | fx l=fM6uvémenf')V(I'n;i'}:!'ofouverﬁéntr)rqﬁﬁ])1(72"{1033)

X)|{[Mouvement X|Mouvement Y jvx vy v Ec
m m m/s m/s m/s ]
3,081 mm -3,686 mm
77,886 mm 0,137 m

Pour la norme de la vitesse v,

0,148 m 0,26 m

On fait de méme pour v,.

on calcule v = /v% + V2,

sIi=uey

1. a. L’origine de I’énergie potentielle de pesanteur
est implicitement choisie a I'endroit correspondant a
I"altitude nulle. Ici, I'origine a été choisie a la
position initiale du ballon. On en déduit que la
position initiale est la position choisie comme origine
de I'énergie potentielle de pesanteur.

b. A I'instant initial, comme I’énergie potentielle de
pesanteur est nulle, I’énergie de la balle se trouve
uniguement sous la forme d’une énergie cinétique.
Sur le graphique, ce n’est pas le cas, car il nous a
été impossible de calculer la vitesse a I'instant
initial, et ainsi nous n’avons pas les énergies a cet
instant.

2. a. Compte tenu de la précision dans le pointage,
on s’apercoit qu’en dehors de la fin du mouvement,

95

Théme 2 ¢ Mouvement et interactions

En langage Latis-Pro, cela donne, dans notre exemple :

3.4 fix |=(vx“2+vy"2)"0.5

){|[Mouvement X"Mouvement Yijvx vy v
m "m m/s m/s m/s
3,081 mm -3,686 mm

On créer les variables Eyp ; Ec puis Em.

Pour Eyp, la variable y représente I'altitude de la balle et
la masse de la balle utilisée dans notre exemple est

m = 0,280 kg. On calcule avec le tableur Ep, = mgy.
Pour E., la masse de la balle utilisée dans notre
exemple est m = 0,280 kg. On calcule avec le

1 . .
tableur Ec = Emv2 en utilisant la norme de la vitesse

calculée précédemment.
Pour Ew, on calcule Em = Ec + Ep,. On obtient, dans
notre exemple, les courbes suivantes.

- amcamyas

I’énergie mécanique semble constante. Cette chute
soudaine d’énergie est sans doute a chercher dans le
fait qu’a ce moment, la vitesse de la balle devient
suffisamment grande pour que les effets des
frottements de I'air commencent a se faire sentir. La
courbe de I’énergie potentielle semble continuer
comme attendu, mais la courbe de I’énergie cinétique
semble stagner. Toute I’énergie potentielle n’est plus
entiérement convertie en énergie cinétique. Une partie
de cette énergie disparait sous forme de chaleur.

b. D’un point de vu énergétique, au cours du
mouvement de la balle, I’énergie cinétique de la balle
s’est transformée en énergie potentielle pendant la
montée, puis la transformation s’est inversée au
cours de la descente.

© Editions Hatier, 2020.



Chapitre 12 « Mouvement dans un champ uniforme

3. a. On peut repérer le sommet de la trajectoire a
I’aide des courbes énergétiques en se rappelant
I’expression de I'énergie potentielle de pesanteur :
Ep = mgy. L'altitude du ballon devient maximale
lorsque I'énergie potentielle de pesanteur devient
maximale aussi.

On utilise alors le réticule de la fenétre graphique
pour obtenir I'instant correspondant au maximum de
I’énergie potentielle de pesanteur. Dans
I’enregistrement utilisé, cela correspondait a la
position telle que t = 400 ms.

b. Au sommet de la trajectoire, I’énergie cinétique
n’'est pas nulle car la balle n’est pas immobile, mais
a toujours une vitesse horizontale. Sa vitesse n’est
donc pas nulle, son énergie cinétique non plus.

On obtient I’énergie cinétique de la balle a cet instant,
en utilisant le réticule de la fenétre graphique.

Dans notre exemple, I'énergie cinétique minimale

o 1 N
était Ecmin = 697 mJ. Comme Ecmin = Emein2, Ol Viin
est la vitesse minimale, on obtient :

-3
_ 2Ecmin _ 2x697 x10 _ 4
me—\/ m 0,280 —2,23m3 .

On compare cette valeur en allant chercher, dans le
tableur, la valeur de la norme de la vitesse v a cet
instant. Pour notre exemple, dans le tableur :
at=400ms, onav=2227 m-s?, ce qui
correspond tout a fait a la valeur calculée.

c. Grace au réticule de la fenétre graphique, on
mesure |I’énergie potentielle maximale.

Dans notre exemple, on mesure Eppmax = 2,389 J.
Comme Eppmax = MgZymax, ON obtient :

Eppmax 2,389 .
= = = X B
yma = = 0as0xosl - & /0x107m

Enregistrement réalisé avec une alimentation de 3,0 V.
On mesure une longueur entre les deux plaques
L=14cm.

En faisant varier x en maintenant y = O, on obtient le
tableau de mesures suivant.

x (en m) Uom (en V)
0 0
0,01 0,28
0,02 0,448
0,03 0,64
0,04 0,834
0,05 1,026
0,06 1,234
0,07 1,444
0,08 1,645
0,09 1,846
0,1 2,046
0,11 2,25
0,12 2,457
0,13 2,656
0,14 3,012
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On peut comparer cette valeur a la valeur de y dans
le tableur. Dans notre exemple : at = 400 ms, on a
y = 0,868 m ce qui correspond tout a fait a la valeur
calculée. La mesure et le calcul correspondent.

4. Cette chute soudaine d’énergie est sans doute a
chercher dans le fait qu'a ce moment, la vitesse de
la balle devient suffisamment grande pour que les
effets des frottements de I'air commencent a se faire
sentir. La courbe de I’énergie potentielle semble
continuer, comme attendu, mais la courbe de
I’énergie cinétique semble stagner. Toute I'énergie
potentielle n’est plus entieérement convertie en
énergie cinétique. Une partie de cette énergie
disparait sous forme de chaleur.

¢ En utilisant la conservation de I'énergie mécanique
entre deux points, on peut connaitre la norme de la
vitesse du systéme en n’importe quel point. On peut
aussi déterminer son altitude maximale.

Cette constatation nécessite de disposer d’un point
(origine, par exemple) ou le mouvement est
parfaitement connu. On peut alors calculer I'énergie
mécanique du systéme et en déduire les
informations citées précédemment.

Ce travail ne dépend pas du choix de I'origine de
I’énergie potentielle, méme si, selon le choix,
I’énergie mécanique du systéme sera différente.
Comme ['utilisation de la conservation de I'énergie
suppose de raisonner sur deux points, le décalage
de I’énergie potentielle di & un changement d’origine
n’aura aucune incidence sur les résultats tirés de
cette conservation.

En faisant varier y en maintenant x = 7,0 cm, on
obtient le tableau de mesures suivant.

y (en m) Uom (en V)
-0,04 1,445
-0,03 1,446
-0,02 1,446
-0,01 1,445

0 1,447
0,01 1,449
0,02 1,448
0,03 1,45
0,04 1,449

La tension Uom ne varie pas lorsque I'on se déplace
en maintenant x constant.

1. a. Les mesures montrent que la tension est
constante lorsque I'on se déplace en maintenant x
constant.

b. La droite représentant Uow en fonction de y est
une droite horizontale, son coefficient directeur est
nul. Cela implique que E, est nulle. Ainsi, le champ
électrique est dirigé uniquement selon (Ox).
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2. a. En utilisant le tableur-grapheur de Latis-Pro
dans notre exemple :
Fenétre n*"1

M en

b. La modélisation affine de notre exemple donne
une pente égale a 20,54 V-m™ et a une ordonnée a
I’origine de 16,7 mV. L’ordonnée a I'origine est trés
faible (au regard des mesures réalisées). On peut
considérer que la relation entre la tension et x est
une fonction linéaire.

c. Le coefficient directeur de la droite correspond a E..

On en déduit donc que E, = 20,54 V-m™.

U
Calculons le rapport— dans notre exemple :

=21,43V-m™*

1. a. La particule est chargée positivement, elle doit
se déplacer vers une armature négative et étre
repoussée par une armature positive.

b. G G G G Cs
e e e ke B Pk
@7 S, @ S @ S
@® € @ ) @ e
® G @ © ® S
Schéma 1

N

1q U

q U
C.vi=——ti+Vvo et x(t)) =Li===——1t?+ vot
Yome Mt =L 2mpL, + 7O
q 1q U
Commevo=0: ww=——t et Li==-=——1t?
0 et ' 2mL11

On obtient :

t1—L1’q =2,7%x 1072 x

th=80x10"s

qU.  [2qu_ \/2x1,60x1019><24
e 1,67 x 102/

vi = 6,8 x 10* m-s™

2. a. Si rien n’est fait, le proton rentrera dans une
zone ou il sera ralenti. Le champ électrique est en
effet orienté dans le sens opposé a son mouvement.
Comme il a une charge positive, la force qui

s’applique sur lui est aussi opposée au mouvement.

2x1,67 x 10727
1,60 x 10729 x 24
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Les deux valeurs sont suffisamment proches pour
s U
considérer que E, = I

3. a. Si on augmente U, E, augmente aussi car E, est
proportionnelle a U.

Si L diminue, E, augmente car E, est inversement
proportionnelle a L.

b. Il ne sera pas toujours simple de vérifier la
prévision de I'influence de L, la plupart des cuves
rhéographiques étant fabriquées pour avoir des
armatures fixes. On peut cependant, avec
I’encadrement de I’enseignant, introduire une plaque
de cuivre (qu’on utilise en générale pour les TP pile)
et la fixer d’'une maniére ou d’une autre ou méme la
tenir avec la pince crocodile qui permettra de la relier
au générateur.

e Le champ électrique est modifié si on change la
distance entre les armatures et la tension imposée a
la cuve.

¢ On peut faire le calcul de la valeur maximale du
champ électrique avec un générateur allant jusqu’a

V) 12
12V : E,=—=———5=86V-m*
L 14x10
b G G G G4 G
© @ © ® © ®
N7 @ © ©) S T
R - -
© S S & O >
® @ @, @ S @
N Schéma 2
W
N . qu
c.Alasortiede Co: vo= -1 to+vi et E(2)=2qU

1
—mv2 =2qU

4qU 4%x1,60x107%x24
V2 = 2y ———=9,6 x 10* m-s™
1,67 x 10

Ainsi, comme v» = E_ to+vi:

mL
to=(v2— Vl)q_u

1,67 x107%7 x2,7 x 1072

— 4 _ 4
t2=(9,6 x10*-6,8x10*) x T60x 10 x 22

=3,3x10"s

t2 est inférieur a la moitié de t.

3. a. Si on veut que la particule passe le méme
temps dans chaque condensateur, on est obligé de
modifier les tailles des condensateurs Cz, Cs, Cs et
Cs en augmentant leurs tailles.
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Chapitre 12 « Mouvement dans un champ uniforme

b. Le point énergétique indique :  Ec(n) = nqU

2nqU

L1 .
soit Emvﬁ = nqU Soit vy =

2nqU
Si on veut que v, = 0,1c, on doit avoir /an =0,1c.

_ 0,01¢2m 0,01 % (2,998 x 108) x 1,67 x 1072/

Soitn 2qU 2x1,60x1071° x 24
n = 2,0 x 10° condensateurs
Ty
L 24/2m
o = -1

Application numérique :

T 1,60x107°x 24
- ——80>< 107 x [———
2\/ 2m \/ 2% 1,67 x 10727

=2,7 X 102 m= L,
n 2 3 4 5
1
m 2,4 31 3,7 4,2
L, (en cm) 6,5 8,5 10 11

e Le fait de disposer d’'une succession de
condensateurs permet d’augmenter fortement
I’énergie cinétique (E«(n) = nqU) en manipulant des
tensions « faibles ». On obtient alors le méme
résultat énergétique qu’'un seul condensateur avec
une tension nU.

¢ Si un proton suit le premier proton avec deux
condensateurs plans d’écart, il se trouve lui-aussi
dans une situation ou il est sans arrét accéléré par
le dispositif. L’accélérateur linéaire permet
d’accélérer des flux de particules « en continu ».

¢ Si on veut fortement augmenter I'énergie de la
particule, méme en augmentant fortement la tension
U, on sera obligé de faire des successions de
condensateurs plans qui seront de plus en plus
grands. Les condensateurs seront donc
nécessairement trés grands en « bout »
d’accélérateur. L'accélérateur linéaire ne pourra donc
pas étre compact.

Exercices

Exercices 1 a 17 corrigés a la fin du manuel de I'éléve.
Exercices 18 a 20 corrigés dans le manuel de I'éléve.

E a. Lorsque x = L, cela correspond a l'instant (que

nous noterons t1) : L = vocos(a)ty soit t1 =

vocos(a)’
L’ordonnée correspondante est donc :

1 .

y(t1) = - Egtf + vosin(a)ts

Soit, en remplagant t1 par son expression, on obtient :
1

y(t1) = - Egm + Ltan(a)

Si a cet instant y(t1) < —H, cela impliquera que le
systéme est arrivé en y = —H avant d’atteindre
I'abscisse x = L et le crash aura donc eu lieu au fond
du canyon. Faisons I'application numérique :

Vo = 150 km-ht = 41,7 m-s?

(1,25x 103)2

41,72 x c0s2(30,0°)
+ 1,25 x 10° x tan(30,0°)

1
y(t1) = - > X 9,81 x

y(t1) =-5,15 %X 10° m
Or H= 1,70 x 10° m. Le crash a donc bien lieu au
fond du cayon.
b. Le crash ayant lieu au fond du canyon, cela
implique qu’il a lieu a I'instant (noté t1) ol y(t1) = —H.
1 1
-H=- Egtg + vosin(a)tz  soit 0 = — Egtg + vosin(a) t2 + H
On doit résoudre un trinbme dont le discriminant est
A=b2-4ac: A = (vosin(a))? + 2gH
Ce discriminant est positif, il existe deux solutions.

Nous ne nous intéressons qu’a la solution positive
(la seconde solution n’ayant pas de sens physique) :

b-VA vosin(a) + /(vosin(oc))2 +2gH
Soit t2 =

2a g

t =
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Application numérique :

41,7 x sin(30,0°) + J(41,7 X sin(30,0°))2+ 2x9,81x1,70x10°
9,81

To=

T.=20,9s

A cet instant, I'abscisse est :

xc = vocos(a)t = 41,7 X cos(30,0°) x 20,9 = 755 m
On remarque que xc est inférieur a L, ce qui confirme
le fait que le crash se fait au fond du canyon.

Les coordonnées du crash sont donc :

xc=755m et yc=1,70x10*m

Exercice 22 corrigé a la fin du manuel de I'éléve.

E 1. La norme du champ E est :
u 300
E=u=——20><10“Vm‘l
2. a. La norme de la force électrique est :
=|glE=3,20x 10" x 2,0 x 10*=6,4 x 10*° N

F= qE. Comme q < O, alors Fa le sens opposé et la
méme direction que E.
3.a.a= g E

m

- -

g est négative, mais i est dans le sens de F.
- qU- qu
=—— En norme : a=——
mL mL

3,20 x 10719 x 300
=4,0 x 10*° m-s?

T 1,60x10 5 x1,5x% 10*2
_av _lau,

b. vi(t) = mLt et .x(t) 2mLt \

c. Notons t = t1 I'instant ol le proton se trouve a

x(t1) = L.
2q 2% 3,20 x 1071 x 300
SOIt Vx tl 25
1,60 x 10

Vi(t1) 35><1O4ms‘l
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¥l a. Dans le triangle y
rectangle :
cos(a) = O et sin(a) = 2
Vo Vo -
On en déduit : Yo
{VOX = Vo cos (a) i “ X
Voy =V sin (OL) o - >

b. A I'instant initial (point
0) : Epn(0) = mgyo = 0 puisqu’a I'instant initial, le
systéme se trouve au niveau de I'origine.

E(0) = %mvg - % x 4,50 x 4,807 = 51,8 J

Ainsi :  En(O) = Epp(0) + Ec(0) = 51,8 J

c. L’énergie mécanique du systéme est conservée
pendant tout le vol du systéme car le systéme n’est
soumis qu’au poids qui est une force conservative.
d. En un point quelconque de la trajectoire, cette
conservation s’écrit : Em(O) = En(M)

L1, 1
soit SMVG = 5mvz + Epo = mgy

En simplifiant les m de chaque c6té de I'égalité, on

obtient la vitesse a I'altitude y :  v= [\2- 2gy

Pour y = 0,15 m, on obtient :
v=1/4,82-2x981x0,15=4,5m-s

P13 Le référentiel d'étude est considéré comme
galiléen. Le systeme étant soumis uniquement a son
poids, la deuxiéme loi de Newton s’écrit ma = P.
Comme P=mg, soit3=g=-g], le mouvement du
systéme est uniformément accéléré.

o dv - o —

Sachant que a = d—‘t/ et que a =g, on a en projection
v
dt
dvy _
dt —
En cherchant les primitives et en utilisant les
conditions initiales (V(0) = Vy), on en déduit que :

v, (t) = v, cos(a)
{vy(t)= —gt + vp sin(a)

sur les axes :

. doM
Sachant que v(t) = F(t), on adonc :
dx

vocos(a
5= Vocos(a)
d .

d—yt= —gt + vpsin(a)

En cherchant les primitives et en utilisant les
conditions initiales (le systeme est a I'origine), on en
x(t) = vpcos(a)t

deduit : {y(t) = —%gﬁ + vpsin(a)t

Exercice 26 corrigé a la fin du manuel de I'éléve.

a. La position a tout instant :
x(t) = vocos(a)t
{y(t) = —%gﬁ + vpsin(a)t
On peut isoler la variable t et trouver I’équation du
X
t=

mouvement : —_—
vocos(a)
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Ainsi, en remplacant t dans I'expression de y, on
1 2

btient : =—Z g————+xtan(a)
obtient : y=-3 g vo20052(@) xtan(a
b. La portée du tir correspond @ y = 0.
. 1 X
Soit 0 =— > g m + xtan(a)

X
vo2cos2(a)
Il existe deux solutions a cette égalité :

- la solution x = O qui correspond a I'origine (la
position initiale du systéme) ;
- lution de P T
a solution 5 g voZc05°(@)
correspond a la portée du tir.
2vp2cos?(a)tan(a)

g
sin(a)
cos(a)’
_ 2vp2cos(a)sin(a)

g
Application numérique :
_2x4,8X% cos(40°)sin(40°)
= 9,81

1
En factorisantparx: O= x(—ag + tan(a))

+ tan(a) = 0 qui

Ainsi, xp =

Comme tan(a) = en simplifiant par cos(a) :

Xp

=2,3m

EE a. Les coordonnées de la position initiale (t = 0)
Xo=0m

{vo =2,6m

b. L'instant d’arrivée au sommet (au moment ou y

est maximum) est ts = 1,4 s. A cet instant, la hauteur

atteinte (I'ordonnée y) est h = ys = 11,75 m.

c. L’instant d’arrivée au sommet (au moment ol y

devient nulle) est tr = 2,95 s. A cet instant, la distance
parcourue (I'abscisse x) est L =x=17,25m

sont :

E a. Les coordonnées de la vitesse initiale (t = 0)
Vo, =6,5 m-s™

Vo, =10,0 m-s™

b. La norme vo est :

Vo =,/Voy? + Vg,?
Vo = +/6,52+ 10,02

Vo=11,9 m-s?

sont : {

Vox = Vo COS ((X) . i Vox
Comme . , on en déduit que cos(a) = —.
{voy=v0 sin (a) q (@) Vo
Vox 6,5 °
o = arccos|— ) = arccos| ——) = 57
Vo 11,9

c. L'instant d’arrivée au sommet (au moment ou v,
devient nulle) est ts = 1,0 s. A cet instant, la norme
de la vitesse correspond a v, qui est lui-méme
constant tout au long du mouvement :

v(ts) = vo, = 6,5 m-s™

Eli] a. Le référentiel est supposé galiléen. Le systéme
étant soumis uniquement a son poids, la deuxiéme

. A - - - -
loi de Newton s’écrit ma =P. Comme P=mg, cela

donne @=g=-gJ: le mouvement du systéme est
uniformément accéléré.

Vo, =0
b. { O~
Voy = Vo
dvy
- = . . i dt -
a =g, on a en projection sur les axes : dv
2 _
dt

© Editions Hatier, 2020.



Chapitre 12 « Mouvement dans un champ uniforme

En cherchant les primitives et en utilisant les
conditions initiales (V(0) = Vy), on en déduit que :
{ v, () =0

v, (D) = —gt+ v

. doM
Sachant que v(t) = ?(t), on adonc :

En cherchant les primitives et en utilisant les

conditions initiales (le systeme est a I'origine), on en
x(t)=0

(O =588+ vot

c. Le systéme atteint le sommet lorsque v, devient

Vi(ts) = —8ts + vo =0 soit ts =%O

déduit : {
Y

nulle :

1
L’altitude du sommet est donc :  y(ts) = — Egts2 + Vots

. 1 Vo2
soit, en remplacant : Y(ts) = 2 g
Application numérique avec vo = 97 km-h™ =27 m-s™ :
(t) == x 2 =37 m
NI =5 %981~

Un oiseau qui passe a une altitude de 100 m n’a
donc rien a craindre.
d. Le carreau retombe au sol lorsque son ordonnée

1
devient nulle (y =0):  y(t) =- Egt2 +vt=0

En factorisant part : t(—%gt+ vo) =0

Deux solutions :
e t=0:c’estl'origine ;

1 . <
° — Egtf + vo =0 : c’est I'instant ou le carreau
retombe au sol.

Exercice 31 corrigé a la fin du manuel de I'éleve.

EF) Sur la Lune, la mise en équations est la méme,
mais g est remplacée par g :

’2’7
tehute = E et Vso = \/ 2hg

Ainsi :
Sur la Terre Sur la Lune
tenute = 0,622 s tehue = 1,53 s
= St Veol = 6,11 M-s™ Vso = 2,48 m-s™t
tehute = 1;81 S tehute = 4,44 S
5= 16’0 m Vsol = 17,7 m-S'l Vsol = 7,20 m-S'l

a a La deuxiéme loi de Newton dit : ma =P

Ainsi, I'unité de la force (le newton N) est égale a
I'unité de la masse multipliée par I'unité de
I'accélération : 1 N =1 kg-m-s2

b. P = mg indique que g s’exprime en N-kg™.

ma=P implique @ = § . g s’exprime aussi en m-s7,
c. L’'instant d’arrivée au sommet de la trajectoire

Vo Sina

s’écrit ts = . Le terme de gauche ts s’exprime

vosina

en secondes (s). Le terme de droite s’exprime
m-s1x1 . »
The2 - s. Les deux termes ont la méme unité,
I’égalité est homogene.

100

d. La trajectoire du projectile a pour équation :

) =-sg—2 4 tan(a)
Y= 2gv020032(a) e
x2

. 1
y s’exprime en m. Le terme — > g

-2

———— s’exprime
vo2cos2(a) P

m?2 _ m3-s
(m-s*l)2 x1 m*s?
terme tan(a)x s’exprime en 1 X m =m.

Tous les termes de I'égalité s’expriment dans la
méme unité. L’équation est homogene.

=m. Le deuxiéme

en m-s2 x

Exercices 34 et 35 corrigés a la fin du manuel de I'éléve.

}I

EE a. Dans le triangle rectangle :

Vi . Vo
cos(a) == et sin(a) = =
Vo Vo

0 déduit - Vor = Vo COS (a)
n en déduit : {v0y=vosin(a) )

b. Le systéme étant soumis J

Y

uniquement a son poids, la Y i

deuxiéme loi de Newton s’écrit ma = P.
- - . L - v d

Comme P=mg, ainsia=g=-g; : le mouvement du

systéme est uniformément accéléré.

- dV - - . .
Sachant que a = P et que a=g, on a en projection

dv.
—=_0
sur les axes : dt
' dvy

E:
En cherchant les primitives et en utilisant les
conditions initiales (V(0) = Vy), on en déduit que :

v,.(t) = vy cos(a)
{vy(t)= —gt + v sin(a)

dx
L doM ) @ vocos(@
Sachant que v(t) = ?(t), on adonc:

dt
En cherchant les primitives et en utilisant les
conditions initiales (le systeme est a I'origine).
x(t) = vocos(a)t
= —% 82+ vosin(a)t
c. Lorsque y = O, cela correspond au moment ou le
systéme décolle (a t = 0), puis au moment de la

On en déduit : {
Y

1
réception du saut (a t = t1). Ainsi, 0 = — > gt% + vosin(a)t.

En factorisant par t : 0= t(—%gt+ vosin(a))
Cette équation est vraie :
esit=0;

.1 . . 2vgsin
*sj— Egtl + vosin(a) =0 soitt: = 0—@.
d. La portée du saut correspond a I'abscisse de ce
point, soit x(t1) : x(t1) = vocos(a)ts
2vp2cos(a)sin(a)

g

e. A partir de la précédente relation, on obtient :

Vo= x(t1)g
© = \J 2cos(a)sin(a)

Application numérique :
Vo = 15x 9,81
© 7 \J2 x cos(45°) x sin(45°)

En replacant et en simplifiant : x(t1) =

=12 m-s* =43 km-h™*

© Editions Hatier, 2020.
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Théme 2 e Mouvement et interactions

Faisons I’hypothése d’une chute sans vitesse EE a. Dans le triangle

initiale. Déterminons I'altitude maximale hmax rectangle :

correspondant a I’'absorption maximale du choc, cos(a) = Vox et sin(a) = Voy

c’est-a-dire correspondant a une énergie cinétique Vo Vo

égale a 0,50 J. La conservation de I'énergie On en déduit : &%
mécanique implique : En(l) = Em(F) Vo = Vo COS () >
Ec(l) + Epp(l) = Ee(F) + Epo(F) Vo, = Vo Sin () i

Comme la vitesse initialée eStan”((;. Ec|(|) = I0- E?F) o b. Le systéme étant soumis uniquement & son poids,
prenant comme origine des altitudes le sol, Ey(F) = O. s . N -

On obtient - Enn(l) = Eo(F) SOit M@hmar = E(F) la deuxiéme loi de Newton s’écrit ma = P.

E Comme P= m§, ainsi a =§=—g7: le mouvement du
SOIt Amax = —-=2 = ooy = 0,27 m =27 cm. systéme est uniformément accéléré.

dv I~
N 3 ) ) N Sachant que a=—et que §=§, on a en projection
EE a. Le systeme étant soumis uniquement a son dt

5 > dv,
poids, la deuxiéme loi de Newton s’écrit ma = P. o
Comme P= m§, ainsi a =§=—g7: le mouvement du sur les axes : djz _
systéme est uniformément accéléré. de -
Comme la vitesse est nulle a I'instant initial, le En cherchant les primitives et en utilisant les
vecteur vitesse v aura la méme direction que le conditions initiales (V(O) =Vo), on en déduit que :
vecteur accélération @, a tout moment de la chute. v.(t) = v, cos(a)
Le mouvement sera donc rectiligne uniquement selon .
o v, (D)= —gt + v, sin(a)
(Oy) (mouvement unidirectionnel). Ainsi, =g dx
dt ., o _
- . . ~  dOM ot = Vocos(a)
En cherchant la primitive et en utilisant les conditions Sachant que v(t) = ?(t), on a donc :
initiales (v(0) = 0), on en déduit :  v,(t) = gt <= &t +Vosin(a)
5 JdOM dy En cherchant les primitives et en utilisant les
Sachant que v(t) = —_~(t), on a donc - = —gt. conditions initiales (le systéme est a I’origine), on en
En cherchant les primitives et en utilisant les x(t) = vocos(a)t
iti & 3 ' origi déduit : 1
conditions initiales (Ielsysteme est a 'origine), on en y(t) - _Egtz + Vpsin(a)t
A A — g 2
déduit : W) =~ 2 gt c. Les coordonnées du systeme au moment de
i 5 i . x= 850m
b. L'instant t1 correspondant a la fin de sa chute : I'atterrissage sont : { f 200
V(1) =-7 620+ 76 =-7 544 m y.=2,00m
1, d. On peut isoler la variable t et trouver I’équation du
y(t) = gt
2 mouvement: t=
vocos(a)
t, = \/_ 2y(ts) - \/_2><(—7 544) =392¢ Ainsi, en remplacant dans I'expression de y :
g 9,81 ’ 1 2
) N N N y=——g%+xtan(a)
La norme de la vitesse du systéme a ce moment-1a 2 7 vp2cos*(a)
est:  v(t) = |-gts = |-9,81 x 39,2| = 385 m-s! La norme de la vitesse initiale vo :
c. ,Le systéme ne subit que son poids, son énergie yr=— 1 g % + xtan(a)
mécanique est conservée : Emi = Eny 27 vg“cos?(a)
Eopi + Eci = Eppr + Ect S0it vo = l xg?
L’origine du repére est prise au point de départ 0= 2g(xftan(a) - y¢)cos2(a)
(v = 0). Ainsi, I’énergie potentielle de pesanteur est Application numérique :
nulle au point de départ (Epsi = O). 1 35.07
A I'instant initial, la vitesse du systéme est nulle Vo= [z X9,81x .
. L . ’ 2 ’ (85,0 x tan(35,0°) - 2,00)c0s2(35,0°)
son énergie cinétique sera donc nulle aussi (E. = 0). -303 4= 109 km-h-t
On obtient donc : 0 = Eppr + Ect vo=3U,o Mm-S = m-
. "
SOit —Eppr = Ecr~ d’ol EmVZ = —-mgyr = -mgy(t1) ITi] a. Cette affirmation est fausse. Si la particule
subit une force, elle sera accélérée (elle subira une
T = /- _ = .5t RN ’ .
Soitv = \/ 28y(ta) \/ 2x 9,81 X (-7 544) = 385 m's accélération non nulle). Ici, elle se trouve dans un
On retrouve le résultat précédent. champ électrique et elle porte une charge électrique.
d. tr = 39,2 s est trés inférieur éilAt =120 s. De plus, Elle subit donc une force (F = qE).
la vitesse calculée (v = 385 m-s- ) est trés supérieure b. Cette affirmation est fausse. L'accélération aura
a la vitesse mesurée (53,6 m-s™). L’hypothese méme sens et méme direction que la force électrique

erronée utilisée est le fait que le systéme ne subisse
que son poids. A partir d’une certaine vitesse, les

forces de frottement de I'air ne sont en effet plus et la méme direction que E seulement si la charge
négligeables. portée par la particule est positive.

- =3 - . - P . .
F. Or F=gE. Ainsi, I'accélération aura le méme sens

101
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Chapitre 12 « Mouvement dans un champ uniforme

c. Si cette particule est freinée, cela implique que
I’accélération subie et donc la force subie est
opposée a la vitesse initiale. Mais encore une fois,

F= qE. La particule est freinée si E est de sens
opposé a sa vitesse initiale, uniguement si la charge
portée par la particule est positive.

d. Cette affirmation est fausse. Si on utilise la

deuxiéme loi de Newton, on obtient : a= % E

L’accélération est inversement proportionnelle a la
masse.

Eﬂ a. La vitesse de I'ion est la dérivée par rapport a t
de I'abscisse (le mouvement est unidirectionnel).
Celle-ci correspond a la pente de la tangente au point
considéré.

Si on s’intéresse a l'instant initial, on remarque sur
la courbe que la tangente a la courbe est I'axe du
temps. Cette droite a une pente nulle.

La vitesse a I'instant initial est donc vo = O.

b. Deux possibilités A x(enm)

s’offrent a nous
pour déterminer sa
vitesse en sortie du
condensateur
(x=15cm):

1. Déterminer la
pente a cet instant-
la. Cette pente o EEEE

0,151

0,10 1

0,05 4

A T
% 30 40

passe par deux 0 10
points mesurables aisément :

- 0,15-0
=B -5 —=7,5x10°m-s?
tg—ta 40x10 7 -20x10

. . e U 1
2. Utiliser la solution littérale : v.(t) = q—t etx(t) =-—
mL 5 (2) L

U t

Comme at=40x10°s,x=0,15m: %= );2

Application numérique :

V) 2 x 0,15
S~ 1,9%10% m-s?
M (40x107°)
La vitesse a l'instant t = 40 x 10° s vaut :

U

vi(t) = %t = 1,9 x 10™ x 40 x 10° = 7,5 x 10° m-s™
c. On en déduit la tension aux bornes du

U 2x(t
condensateur : L xé )
mL t
2x(t)  mL 2x0,15 4,49%x 1072 x 0,15
Us—7X—= —19
t 3x1,60x%x10

- 2
9 (40x107)
U=2,6x10°V=2,6 MV
m a. On suppose que le référentiel d’étude est

galiléen. Le systeme étant soumis uniquement a la
force électrique, la L

- >

deuxiéme loi de Newton (7 - ©)

s’écrit ma = F. Comme —_— A

— - +) (-) ..

F = gE, cela donne \6/ = S X
L =, = d I A N3

ma =qE. Ainsi, a ZEE' @ i P S

i est orienté de la méme (3 )

N
maniére que gE et g est + -
TR W g
mL U
.

b. Voir schéma ci-contre. T

- -
positive : a

102

c. En norme : a= il Ainsi, a= ﬂ?. Il vient, en
dt mL
projection suri:
dv, _qU
dt  mL
La primitive est v,(t) = :q—lit + C1 avec C; constante.

Or la vitesse initiale est nulle :  v,(0)=C+1=0

de _ U,
dt ~ mL"

L 1qU,
La primitive est x(t) = Eﬂt + C> avec C; constante.
Or la position initiale du proton est I’origine de I'axe :

1
(0) = C2 = 0. On en déduit que x(t) = E:Titz'

- u C e .
Ainsi, v,(t) = %t. Ceci s’écrit aussi

U
d. vi(t) = %t

. . U
Et la norme du champ électrique est E = T
E . mv,(t
On a donc v(t) = %t SOt E = A.
Application numérique :
—25 6
3,44 x10°° x3,0x10
= o) =3,2Vm?
3,20x10"x1,0
e. La distance parcourue a cet instant :
— 1 qU 2 lq_E 2
X(t) = 2mLt T2 mt

Application numérique :
3,20x10719x 3,2

x(t =—%X1,0=1,5X 10 m

2x3,44x10

m a. La particule étant positive, I'armature A doit

étre chargée positivement (et B négativement) pour

qu’il y ait accélération. On en déduit que I'armature A

est reliée a la borne positive du générateur.

b. La norme du champ Eest:

L 7,62
La force électrique a pour norme F = gE.
F=1,60x10%*x5,2x10°=8,3x 10N
c. En choisissant o L .
comme échelle pour , o
le champ électrique
1cmcorresponda A ;
25x10°V-mton I F o
obtient une fleche ® ‘/\—
de longueur 2,1 cm N G
pour le vecteur U

. . ) —

champ électrique.
En choisissant comme échelle pour la force 1 cm
correspond a 4 x 107** N, on obtient une fléche de
longueur 2,1 cm pour le vecteur force.
d. On suppose que le référentiel d’étude est galiléen.
Le systéeme étant soumis uniqguement a la force

. . N . e . > 2
électrique, la deuxiéme loi de Newton s’écrit ma = F.

)
-/

Y=

D OO

G

Comme F = qE, cela donne ma = qE. Ainsi a = % E.
est positive 1 a = ET
q p : =L

-

- dv . L eU—,>
Ennorme,a=— et g=-e. Ainsia=—1..
dt mL

) . i - dv,
Il vient, en projection sur i : P

el
mL

— u
La primitive est v,(t) = %t + C1 avec Ci constante.
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Or la vitesse initiale est nulle:  v(0)=C1=0
dx

Ainsi, v (t) = —t Cela s’écrit aussi — = —t
dt mL

le
La primitive est x(t) = Eﬂtz + C. avec Cz constante.
Or la position initiale du proton est I’origine de I'axe :

1
(0) = C2 = 0. On en déduit que x(t) = Eﬂtz'

mL
e. Notons t = ti1, I'instant ol le proton se trouve a
x(t1) = L (en B).

1 2mL?
Ainsi, x(t1) = L = _e_tl On en déduit t:2 = ——.

eU
A cet instant, la wtesse du proton est :

eU 2m
Vi(t1) = — t1 X L ’—
2eU 2x1,60x 1071 x 4,0 x 10°
SOt vy(t1) = 27
1,67 %10

Vo(t1) = 2, 8 x 10" m-s™
Cette vitesse finale ne dépend pas de la distance

entre les armatures.

f. A I'instant initial, la vitesse du proton est nulle.
1

Son énergie cinétique E(l) = Evaz est nulle.

D’apres le théoréeme de I'énergie cinétique :

Ec(F) — E¢(l) = qU

Org=e, Ur=U et E(l)=0.
On en déduit : Ec(F) =eU

1 2eU
Eva2 =elU soit vi = | —

On retrouve I'expression obtenue précédemment.

I¥1 a. On suppose que le référentiel d’étude est
galiléen. Le systéme étant soumis uniquement a la
force électrique, la deuxieme loi de Newton s’écrit

ma = F. Comme F = qE, cela donne ma = qE.
Ainsi 3 = 3 E.

—e >

q est negatlve a=— E

b. Pour que I'antiproton 50|t décéléré, il faut que
I"accélération soit dirigée selon le sens inverse du

- -€ =2 = .
mouvement. Comme a = ~ E, E est dirigé dans le

. -
sens inverse de a.
Cela implique que le champ électrique doit étre dirigé
dans le sens du mouvement.

. . . -
c. En choisissant I'orientation de i comme

- -

correspondant a I’orientation du mouvement, E = Ei.

L. o> e . .. - dv, E

Ainsi, a = —Ei. Il vient, en projection suri, —=-—.

m dt m

avec C: constante.

Vx(o) =

E
La primitive est v,(t) = - %t + C1

Or la vitesse initiale est nulle : Ci=wo

. eE e . dx eE
Ainsi, vi(t) = — —t + vo. Cela s’écrit aussi — = — —t + vo.
m dt m

avec C2
constante. Or la position initiale du proton est
I’origine de I'axe : x(0)=C2=0

leE ,
=———1°+ vot.
2m

N leE
La primitive est x(t) = - EFF + Vot + C2

On en déduit que x(t)

d. L’antiproton est a I'arrét aprés avoir parcouru une
distance D = 15 m. A ce moment-a, v.(t;) = O,
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. eE . mvg
soit——ti+ vo=0 soit tr = —.
m eE
Et a ce moment-a, x(t) = 15 m.
leE
=_==2 +
x(tr) o™ t~ + Votr
. . 1 my,
Soit, en remplagant I’expression de tr:  x(t) = > eg
. .. 1 mvp?
On arrive a isoler E : E==—2
2 ex(tf)
Application numérique :
2
1 1,67x10°"x(25x10°%)
E=>-x —5 =2,2x103V-m*
2 1,60x10  x15

U
E a. Lanorme de EestE = T
La tension a appliquer correspond a U = EL.
Application numérique :
U=1000x%x10®x2,0x102=2,0x10*V
b. On suppose que le référentiel d’étude est galiléen.
Le systeme étant soumis uniqguement a la force
électrique, la deuxiéme loi de Newton s’écrit ma = F.

Comme I_-') = qE, cela donne ma = qE. Ainsi, a= % E.

- > —e- - . .
g est négative: a = FE en choisissant I’orientation

- . . -
de i comme correspondant a |’orientation de gE.
- dV

a=—
dt

que E= —ET). Il vient, en projection suri:

. .> eU- .. .
et g=-e.Ainsi,a= ) i (ce qui implique
dv, eE

dt m

A eE
La primitive est v,(t) = Ft + C1 avec C; constante.

Or la vitesse initiale est nulle:  v(0)=C1=0
. eE . . dx  eE
Ainsi, v,(t) = —t. Ceci s’écrit aussi — = —t.
m d m

L 1leE
La primitive est x(t) = Eﬁtz + C2 avec Cz constante.
Or la position initiale du proton est I'origine de I'axe :

x(0) = C2 = 0. On en déduit que x(t) = 5 -t

c. L’électron atteint I'armature positive, lorsque x(t) = L :
Egtf2 =L soit tr = 2mt

2m eE

Application numérique :

—31 —2
- \/2x9,11><11% x20x10%_ ) o q00s
1,60x107 x1 000 x 10
Cette durée n’est par perceptible par I’ceil humain. Il
observera donc I'arc électrique mais ne pourra en
aucun cas observer sa formation.

m a. A la sortie du moteur, I’énergie cinétique d’un

1
ion xénon est E(F) = Eva
Avec VO =50 km-s?=5,0x 10* m-s?:

E.(F) = 5 X 2,18 x 102 x (5,0 x 1042 =2,7 x 1076 J

b. Au cours de I'accélération, le travail de la force
électrique (constante) est moteur et vaut :

We(F)=F-TF=FL
Comme F = qE et que q est positif, W,F(F') = gEL.
Comme la norme du champ électrique est E = —

- U
We(F) = gL = qu
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Chapitre 12 « Mouvement dans un champ uniforme

D’aprés le théoréeme de I'énergie cinétique :

Eo(F) - Ed(l) = Wie(F) = qU
Or a I'instant initial la vitesse des ions est nulle,
I’énergie cinétique aussi : E«(F)=qU
E 2,7x1076
onendéduit: U==B_ 27710 4200y
q 1,60>< 10
_Q o
c.l= A soit Q = IAt

Comme la charge apportée est la charge des N ions
xénon émis : = IAt

1,60x 10710
d. L’énergie cinétique de I'’ensemble des ions xénon

=2,20 x 10*°

émis en une seconde est : E. = NE(F)
=2,20x10*®x 2,7x101% =59 x 10°)
E, NEy(F
La puissance du moteur seradonc: P= A—Ct = %
Application numérique :
2,2x10%%%x2,7x10716
p=o2X” *XATX =5,9x10° W = 5,9 KW

1

I¥] a. Le référentiel est supposé galiléen. Le systéme
étant soumis a son poids et a la force électrique, la

deuxieéme loi de Newton s'écrit m3 =P+ F.

Comme P=mg et F = gE, cela donne m3 = mg + gE.
Comme g=-gj et E=-Ei, et comme q=-e

- _ = g—>__-.>_£_—.> P e =
a—g+mE— g j m(Er) soit a g1+mE1

-, dv . .
Sachant que a = prs on a en projection sur les axes :

dv, e
dt  m
d __
dt

En cherchant les primitives et en utilisant les
conditions initiales (v(0) =6), on en déduit que :

e
v, (t) = —Et
(0=~
v, () = gt
d e
. — = —Et
. dOM
Sachant que V(t) = F(t)' on adonc : ddty "
a =

En cherchant les primitives et en utilisant les
conditions initiales (le systeme est a I'origine), on en

—lepp
x(t) = 5m Et
1
WO =58
b. L’électron arrive a I’armature positive lorsque x(tr)
le
x(t) = EEEtfz =L

déduit :

A ce moment-la, y(t) = d :

V) leU 2m
CommeE—z. Ea_tf =L soittr=L U

Application numérique :
2x9,11x10731

tr= 5,00 x 102 x \/ —5 =2,39x10°%s
1,60 x 1077 x 5000
N 1
Acetinstant: y(t) =- 5 gt?=d
1 2mlL? mL?
d——ag oU soitd = —g—

=L.
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Application numérique :
9,11x 10" x (5,00 x 10*2)2
d=-9,81x 5
1,60 x 107 x 5 000
d=-2,79%x10* m
c. A cet instant-3, on peut écrire les coordonnées du
vecteur vitesse de la maniére suivante :
e
00 eyamia) e (o e
e f v, (t) = -8t
Application numérique :
.y _ 160 107" 5000
Vit = 911107 500x 1072
v,(t) =-9,81x2,39x10°=2,34x10° m-s*
Calculons tout d’abord la norme de la vitesse :

) = J(u0)+ ()

Application numérique :

x2,39%10°=4,20%x10" m-s?

vit) = J (4,20x107)" + (2,34 x 10°8)?
v(t) = 4,20 x 10" m-s™®
Comme cos(a) = et
v(ty)’
a = 0,00° avec la précision des calculs.

d. L’angle est, en tenant compte de la précision des
données, inexistant. Le décalage d =-2,8 x 10" m
est 102 fois plus petit que le noyau d’un atome.

La prise en compte du poids dans cet exemple est
totalement inutile.

I"application numérique donne

P mL? . R
e. La déviation d = —gg est proportionnelle a la

masse. Dans le cas du proton, cette déviation sera
donc de I'ordre de :

d=-2000x%x2,79%x 10 =6 x 10" m

Cette déviation est encore 1 000 fois plus petite que
la taille d’'un atome.

La prise en compte du poids dans cet exemple est,
une nouvelle fois, totalement inutile.

EE Faisons I’hypothése d’une chute sans vitesse
initiale. Notons I'altitude de départ h (pour étre en
accord avec les notations de I’énoncé) et v la vitesse
atteinte au moment du choc sur le sol.
On choisit comme origine des altitudes le sol. La
conservation de I’énergie mécanique implique :
Em(l) = Em(F)
Eo(I) + Enp(l) = Ec(F) + Epp(F)
Comme la vitesse initiale est nulle, E¢(l) = O et comme
I’altitude finale de la voiture est nulle, Ex(F) = O.
On obtient :  Epp(l) = Ec(F)

2

. 1, . 1V
soit mgh = 2mv soith = 22

Applications numériques

A -1 _ 1. 142 —

A 50 km-h™ =14 m-s .h—2x—w—10m

A70kmhi=19mst:h=—— =18 m
2x9,81

A 80 km-ht = 22ms‘1'h=i=25m
2x9,81

A 130 km-h = 36 m-s7 : h = ——>— = 66 m

2x9,81
En suivant les indications de I’exercice :
f_33m B oem:2-29m; —29m
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On peut imaginer une hauteur d’étage choisie de
I’ordre de 3 m.

La comparaison entre vitesse et nombre d’'étages
semble convenable.

La premiére critique que nous pouvons faire, c’est de
confondre « impact » avec une énergie d’impact.

La deuxieéme critigue que nous pouvons faire est
d’associer « impact » avec « chute du... », ce qui
laisserait a penser que cet « impact » mesurerait une
hauteur de chute.

Enfin, lorsque I'on écrit une égalité, les deux
membres doivent avoir la méme unité, ce qui n'est
pas le cas ici.

Il semble que ce « VITESSE = IMPACT?2 » évoquerait

plutdt la formule de I’énergie cinétique :

L’image confond I'énergie cinétique avec le terme
« vitesse » et la vitesse avec le terme « impact ».

E—lmv2
cT 2

IX] a. On déduit du y
schéma ci-contre :
Ve = Vg COS (a)
{voy =V, sin (a)
Le systéme étant soumis
uniquement a son poids, 7

Y =

la deuxieme loi de 0o -
> 1
Newton s’écrit ma = P.
2 - = 2
Comme P= mg:f, ainsia=g =-g j:le mouvement du
systéme est uniformément accéléré.
o dv R —
Sachant que a = p et que @=g,, on a en projection
dv,
sur les axes :
dt L
En cherchant les primitives et en utilisant les
conditions initiales (V(0) = Vy), on en déduit que :
{ v, (t) = v, cos(a)

v, (D)= g t + vo sin(a)

N doM
Sachant que v(t) = (t), on a donc :

dt
dx @
— = v,cos(a
dt °
dy
— =—g t + vysin(a
dt gL 0 ()

En cherchant les primitives et en utilisant les
conditions initiales (le systeme est a I'origine), on en

x(t) = vycos(a)t
déduit : 1
y(t) = ~S &2+ vosin(o)t

Lorsque y = O, cela correspond au moment ou le
systéme décolle (a t = 0) et au moment de

. - 1 .
I"alunissage t = t1. Ainsi, 0 =— EthQ + vosin(a)t.
. 1 .
En factorisant par t : 0= t(_Eth + vosm(a))
Cette équation est vraie :
esit=0;
1 2vpsi
* si— —git1 + vosin(a) =0 soit t1 = M.
2 8
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La portée correspond a I'abscisse de ce point, soit
x(t) : x(t1) = vocos(a)ts
En remplacant dans cette expression I’expression de

2vp2 i
t1, on obtient : x(t1) = 2vg00s(@)sin(a)

8L
"ol — x(tl)gL
d’ol vo = Ssos @S
Application numérique :
- 400 x 1,62 ~ .
Vo = \/2 X 005(45,0") x sin(45,0°) = 21,4 m-s

b. Sur Terre, un tel tir aurait eu une portée de :
_ 2v02cos(a)sin(a) _2x21,42% cos(45,0°) x sin(45,0°)

x(t) = 981
x(t) =
& a. @ @
L U
O & © g ©

b. Le systéme étant soumis uniquement a la force

< N s . P > 2

électrique, la deuxiéme loi de Newton s’écrit ma=F.
- - - -

Comme F = gE, cela donne ma =qE.

_ 2 2 o9 eEs
q=-e et E=-£j. A|n5|,a—mE—mj.le

mouvement du systéme est uniformément accéléré.

— d\7 s EE—) . .
Sachant que @ = -; €t aue @ =—j, on a en projection

dv.
X _0

sur les axes : dt
: dv,, _eE
dat ~ m

En cherchant les primitives et en utilisant les
conditions initiales (V(0) = Vy), on en déduit que :

vx(t) = VO
® eEt
v, ()= —
Y m
dx
... dOM @ Vo
Sachant que v(t) = F(t)' on a donc : dy  eE
a& - m

En cherchant les primitives et en utilisant les
conditions initiales (le systéme est a |'origine), on en

X(t) = Vot
déduit : leE
{y(t) =5t
. s P iz X
En isolant t dans la premiére égalité : t= -
(6]
On obtient I’équation de la trajectoire de I'électron :
_leE (1)2
a 2m \vg
soit commeE—g' ()—ix—2
’ L Y = omL v?

c. L’ordonnée de I'électron au moment de sa sortie
du condensateur est ys = 14 mm, cela correspond a
D2 e

. U
xs = D. On en déduit que ys = = it—=

2LVo2yS
2mL vg? ’

ub?
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Chapitre 12 « Mouvement dans un champ uniforme

Application numérique :
2
2% 4,0x1072 x (2,50 x 107) x 14 x 1073

e
m 400 x (10,0 x 10*2)2

e

=1,8 x 10* C-kg*
m

e

On en déduit la masse de I'électron : m=——
2Lvy~yg

up?

Application numérique :
_1,60x107"°
~ 1,8x10%

La valeur retenue étant 9,11 x 1073 kg, on constate

que les deux valeurs sont trés proches.

=9,2x 103 kg

@ Au moment de la bascule, I’énergie cinétique est
transférée entierement. Ce transfert se faisant au
niveau du sol (Qque nous prendrons comme origine
des altitudes), cela implique que ce transfert se fait
a un moment ol les deux athlétes ont des altitudes
nulles. Ainsi, c’est I’énergie mécanique dans sa
totalité qui se transfert, au moment de la bascule,
d’un athléte a I'autre.

L’altitude maximale s’obtient au moment ol la
vitesse est nulle (sommet de la trajectoire verticale).
A ce moment, I'énergie du systéme est une énergie
entierement potentielle (de pesanteur) :

Em1 = Epp (SOMmet 1) = magy

De méme pour I'athléte 2 :

Em2 = Epp (SOMmMet 2) = mogy»

L’énergie mécanique est entiérement transférée :
Eml = Em2

mayy
migy1 = Magy2 1

Soit miy1 = may2 d’oll y2 = —.
maz

a. Si les deux athlétes ont la méme masse :  y2 =1
Les deux athlétes vont a la méme altitude maximale.

b. Si m2 = 2ma, alors y» =%. L’athléte 2 aura une
altitude maximale deux fois plus faible.
c.Simz= % alors y> = 2y1. L'athléte 2 aura une
altitude maximale deux fois plus grande.

@ a. Sur le schéma, I'ion est accéléré en étant
repoussé par des charges positives (et attiré par des
négatives), il porte donc une charge positive.

b. A I'instant initial, la vitesse de I'ion est nulle, son
énergie cinétique aussi :  E¢(I)=0

A la sortie du condensateur accélérateur, I’énergie

1
cinétique de l'ion est :  E¢(F) = EvaZ

Au cours de 'accélération, le travail de la force
électrique (constante) est moteur et vaut :
We(F)=F-IF = FL

Comme F = gE et que q est positif, Wie(F) = qEaccL..

Uace

L

Comme la norme du champ électrique est Eacc =
- U.

W":(F) = Q%L = qQUace

D’apres le théoréeme de I'énergie cinétique :

Eo(F) - Eo(l) = We(F) = qUaco

1
Soit Ec(F) = QUacc d’olu EI'WVO2 = QUacc

106

’2 U
On obtient vo = %.

c. Le systéme étant soumis uniqguement a la force

< N s . 2 s > 2

électrique, la deuxiéme loi de Newton s’écrit ma =F.
- - _ -

Comme F = gE, cela donne ma =qE.

- - N - E—_>
q est positif et E=-E]. Ainsi,a=%E=—q—j: le

m
mouvement du systéme est uniformément accéléré.

- dv - gE -
Sachant que a =Eet que a =—;_[, on aen

dvy

et | ) dat
projection sur les axes . dvy qE
dt ~ m

En cherchant les primitives et en utilisant les
conditions initiales (v(0) = V,), on en déduit que :

{ v, (1) =vp
qE
v, () = ——t
() -
dx v
> . dOM — =,
Sachant que v(t) = F(t)' on a donc dydt o
a - m

En cherchant les primitives et en utilisant les
conditions initiales (le systeme est a I'origine), on en

{ x(t) = Vot

déduit : 1qE

y)=-5-1

d. En isolant t dans la premiére égalité : t= vi
0

On obtient I’équation de la trajectoire de I'électron :

1qE (x 2
25

2m \vg
. Uge Ugey x2
Soit, comme E =2 . y(x) = _ L *
L' 2mL' vp?
, . 2qUacc
On peut alors remplacer I'expression de vo = —m
. QUgey M
On obtient : = - —=—x?
Y = = o 2qU
En simplifiant :  y(x) = — —2& 2
4L'Upge
Lorsque x = D, en sortie du condensateur déviateur,
Ude N P Uges
y(D) = - —2Yp2 Dol la déviation :  d = —?
41" Ugee 41 "Ugee

Cette déviation dépend des dimensions du
condensateur déviateur, et des deux tensions
utilisées. Cette déviation ne dépend pas de la masse
de Iion (ni de sa charge).

En mesurant cette déviation, on ne peut accéder aux
grandeurs caractéristiques de I'ion.

Exercice 53 corrigé a I'adresse hatier-clic.fr/pct368

-

E 1. Le proton subit la force électrique : F= gE

Comme g = e, on obtient : l_f) = eE
U
En norme : F=eE=%
Application numérique :
1,60x10°x2x10°
F= =8x 10N

2. La norme du poids est P = mg.
P=1,67x10% x9,81=1,64x10%N

© Editions Hatier, 2020.


https://www.hatier-clic.fr/pct368

-14
Bx10 510

1,64 x10

La force électrique est 10*2 fois plus grande, en
norme, que le poids. Le poids est donc négligeable.
3. La particule étant positive, I'armature A doit étre
chargée positivement (et B négativement) pour qu’il y
ait accélération. On en déduit que I'armature A est
reliée a la borne positive du générateur.

4.1. A 'instant initial, la vitesse de I'ion est nulle,
son énergie cinétique aussi Ec(l) = 0.

A la sortie de I’'accélérateur, I’énergie cinétique de
I’ion est E.(F).

Au cours de I'accélération, le travail de la force
électrique (constante) est moteur et vaut :

We(F)=F-IF=Fd
Comme F = qE et que g = e est positif, W,F(I_-')) = eEd.

F_
5=

U
Comme la norme du champ électrique est E = p :
- U
W, (F) = e~d=eU
D’aprés le théoréeme de I'énergie cinétique :
Eo(F) - Eo(l) = W (F) = eU  soit E«(F) = eU.
Avec U =2 MV, E(F) = 2 MeV.
Cette énergie est bien située entre 1,4 et 4 MeV.
1 1
4.2. E(F) = Emez d’ol Emez =elU

On obtient :

2eU 2x1,60x 10719 x 2 x 10°
vi= |[— = — =2x10"m-s*
m 1,67 x 10

5.1. On suppose que le référentiel d’étude est
galiléen. Le systéme étant soumis uniquement a la
force électrique, la deuxieme loi de Newton s’écrit

-

5
ma=F.

Comme l_E> = qE, cela donne ma = qE. Ainsi, @ = % E.

- - N e o N el -
g=e et E=E donca=—Ei soita=—i|
m md
On en déduit que I'accélération est uniquement
irigé : . _&u
dirigée selon I'axe (Ox) : a,= e
— d\7 — el -
5.2.a= p” eta—mdl
. - - dv, eU
Il vient, en projection sur i : —=—
U dt md
. e
La primitive est v,(t) = mt + Ci1, avec Ci1 constante.
Or la vitesse initiale est nulle:  v(0)=C1=0
. el S cdx  eU
Ainsi, v,(t) = mdt. Celals ‘cht aussi i mdt.
f s e
La primitive est x(t) = Eﬁﬁ + C> avec C; constante.

Or la position initiale du proton est I’origine de I'axe :

1eU
x(0) = C2 = 0. On en déduit que x(t) = E%F.

On peut trouver la vitesse finale atteinte en
cherchant la vitesse atteinte lorsque x(t;) = d.

1eU 2m
. 2 = i = _—
Dans ce cas : 5 mdtf d soittr=d U
En remplacant cette expression dans I’expression de la
. . eU . 2eU
vitesse, on obtient :  vi = v (t;) = ﬁtf soitvi= |—

On retrouve I'expression (et donc la valeur) du 4.2.
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5.3. A x(enm)
4 B
3 4
2 4
A t(en ns)
0 - T T T T :
0 100 /360 300 400 500

Le graphique montre la distance x parcourue par I'ion
en fonction du temps t.
La vitesse est la dérivée par rapport a t de I'abscisse
(le mouvement est unidirectionnel). Celle-ci
correspond a la pente de la tangente au point
considéré. Cette pente passe par deux points
mesurables aisément :

=BT 200 L 19x10 ms*

tg—ta 410x107° -200x 10

On retrouve la valeur calculée, a la précision de la
mesure pres.

6. L’'intensité est : ! =§ d’oll Q = IAt

Comme la charge apportée est la charge des N
IAt
protons émis: Ng=Q soitN = r

Application numérique pour une minute de
fonctionnement :
50x 1079 x 1 x 60
N=————5—=19x 10"
1,60 x 10
Soit une quantité de matiére de protons :
N 1,9%x10%

@ 1. Le référentiel est supposé galiléen. Le
systéme étant soumis uniquement a son poids, la

. . P - -
deuxiéme loi de Newton s’écrit ma = P. Comme

P =mg, cela donne m3=mg. Ainsi,3=8= g : le
mouvement du systéme est uniformément accéléré.
D'otu: adt)=0 et aft)=-g

dv N
2. Sachant que a= pm etquea=g,onaen

projection sur les axes : dv
Y

T
En cherchant les primitives et en utilisant les
conditions initiales (V(0) = Vy), on en déduit que :

{ vx(t) =Vo
v, (1) =gt
. dx v
N doM at Vo
Sachant que v(t) = ?(t), on adonc : d‘/jvt
a =&

En cherchant les primitives et en utilisant les
conditions initiales (le systéme estax =0 ety = h),
x(t) = Vot

déduit :
on en dédui {y(t)=—%gt2+h
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Chapitre 12 « Mouvement dans un champ uniforme

En isolant t : =
0]
On obtient I’équation de la trajectoire :
___8 o
y(t) = 22 x>+ h

3. Déterminons la portée du tir. Pour cela, cherchons
la solution correspondanta y =0 :

___8 _
y(x) = 2Vo2x +h=0

. 2vo2h .
On obtient x2 = =2—. Comme le x cherché est

g
r _ ,@_ ’2><3,50_
positif:  x=wo - 21,0 x o8l - 17,7 m

x est inférieur a 18 m. Le ballon touche le sol avant
la ligne de fond.

4.1. Les expressions des énergies cinétique Ec,
potentielle de pesanteur E,, et mécanique En du
ballon en un point quelconque de la trajectoire sont :

Epp = mgy Em=E:+ Epp

4.2. Le graphique de la figure suivante représente
I’évolution temporelle de ces trois énergies :

AEm Ec Epp Courbe 3

E—lmv2
‘T2

Cou;be 2

Courbe 1

t

0 >
0

L’énergie mécanique du systéme est conservée, car
le systéme ne subit que son poids (qui est une force
conservative). Em correspond donc a la courbe 3.
Le ballon part d’une altitude élevée (3,50 m) pour
arrivé au sol. Son énergie potentielle de pesanteur va
donc diminuer au cours du mouvement. Epp
correspond a la courbe 1.
La vitesse de la balle va augmenter en arrvant au
sol. Ec correspond donc a la courbe 2.
4.3. L’énergie mécanique est conservée entre le
point de départ et d’arrivée : Em(l) = Em(F)

1 1
Soit EI‘TWO2 + mgh = EmVsol2
En simplifiant les m de chaque cété de I'égalité, on

. 1 1
obtient : EVOZ + gh = EVsolz

d’oll I'on déduit vsa = 4/ Vo2 + 2gh
Application numérique :
Voo = 4/21,0% +2x 9,81 % 3,50 = 22,6 m-s*
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5. Au cours du mouvement, nous avons considéré
que le poids agissait seule sur le ballon.

Or des forces de frottement de I'air agissent.

Ainsi I’énergie mécanique n’est pas constante et va
diminuer Iégérement au cours du mouvement.
L’énergie cinétique finale sera donc moins élevée
qgue prévu et la vitesse au sol fera de méme.

6. La réception se fera lorsque y = h’ = 80 cm

Or y(x) =—%x2 +h

Ainsi, on peut déterminer I'abscisse x: du ballon au

moment de la réception : h" =- %xﬁ +h
2V0
2(h-h' 2x(3,50-0,80
%hm=w/( )=2L0xfli————l
g 9,81
x=156m
Cette intersection se fera a I'instant t; :
_ X _156 _
t, o~ 210 0,74 s

Le défenseur devra donc parcourir une distance
d =L —xen une durée t.
L—xy

Sa vitesse moyenne devra étre : :
r

Vimoyenne =

Application numérique :

18,0-15,6
0,74

Cette vitesse semble réaliste pour un athléte de haut
niveau.

=3,2m-s*

Vmoyenne =
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