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10. Cinématique du point 
Activités p. 260 à 263 
ᬅ Vecteur accélération 
1. a. D’après le doc. 1 : 
« Les deux premières 
positions de la voiture 
sont si proches qu’elles 
semblent confondues sur 
le schéma. » 
Il y a donc 10 intervalles 
de temps dans la phase 
1 et dans la phase 2. 
Les phases 1 et 2 
durent 10,0 s. On en 
déduit donc que la durée 
entre 2 positions successives correspond à 1,00 s. 
Pour vérifier que la norme de la vitesse reste 
inchangée au cours de la phase 2 et de la phase 3, 
on mesure (avec sa règle) la distance entre deux 
positions successives à différents moments. Cette 
distance étant toujours la même, on en déduit que la 
vitesse est toujours identique en norme. 
b. Il s’agit du point de vue de l’élève. Normalement, 
l’élève sait qu’il n’y a pas d’accélération en phase 3. 
Il peut aussi dire (de manière erronée) qu’il n’y en a 
pas en phase 2. 

2. a. vx(t) = 
dx
dt

(t) Ainsi, vx(t) est le coefficient 
directeur de la tangente à la courbe au point 
considéré. La courbe est une fonction croissante, le 
coefficient directeur est positif, donc vx(t) est positif. 
La courbe n’est pas une fonction linéaire et devient 
de plus en plus pentue. Ainsi, au fur et à mesure, vx(t) 
augmente. 

b. x(t) = 
1
2
kt2 Ainsi, vx(t) = 

dx
dt

(t) = kt. 
D’après le doc. 1, k > 0. vx(t) est donc positive. 
dvx
dt

(t) = k > 0 donc vx(t) augmente avec le temps. 

Ces constatations sont en accord avec la question 2a. 

c. Comme vx(t) = kt, ax(t) = 
dvx
dt

 (t) = k. 
De plus, y est nulle à tout moment. 

vy(t) = 
dy
dt

(t) = 0   et   ay(t) = 
dvy
dt

(t) = 0. 
Le vecteur accélération est donc constant. Il est dirigé 
selon l’axe des x dans le sens des x croissant. 
3. La norme de la vitesse est inchangée (1a) mais 
comme le vecteur vitesse est toujours tangent à la 
trajectoire, on en déduit que la direction du vecteur 
vitesse change. Le vecteur vitesse n’est donc pas 
constant. 
Le vecteur accélération ne peut donc pas être nul. 
4. Dans cette phase la norme de la vitesse est 
inchangée (1a). La trajectoire est, cette fois-ci, une 
droite, la direction du vecteur vitesse reste identique. 
Le vecteur vitesse est donc constant sur cette phase 3. 
Le vecteur accélération est nul dans cette troisième 
phase. 

Bilan 
• Si on dispose des coordonnées de la position d’un 
point au cours du temps (ses équations horaires), en 
dérivant par rapport au temps ces coordonnées, on 
détermine les coordonnées du vecteur vitesse. 
En dérivant par rapport au temps les coordonnées du 
vecteur vitesse, on détermine les coordonnées du 
vecteur accélération. 
• Pour que le vecteur accélération soit nul, il faut que 
la norme du vecteur vitesse soit constante 
(mouvement uniforme) mais aussi sa direction et son 
sens (mouvement rectiligne). 
Ainsi, le vecteur accélération ne peut être nul que 
pour des mouvements rectilignes uniformes. 
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ᬆ Étude d’une chronophotographique 
1. a. Les enregistrements 1 et 2 montrent des 
mouvements circulaires. Les enregistrements 3 et 4 
montrent des mouvements rectilignes. 
b. Les mouvements uniformes sont les mouvements 
des enregistrements 1 et 3. En effet, la distance 
parcourue entre deux points successifs semble la 
même à tout instant. 
2. Traçons le vecteur vitesse au point 3. 
Pour tracer le vecteur vitesse au point M3, on 
détermine la vitesse moyenne entre le point d’avant 

et le point d’après : v3 = 
M2M4

2∆t
 

Sur la figure, M2M4 mesure 4,0 cm. 

v3 = 
4,0 × 10–2

2 × 100 × 10–3 = 0,20 m·s–1 

Sur le schéma le vecteur vitesse vԦ3 est tangent à la 
trajectoire, a le sens du mouvement et sa longueur, 
compte tenu de l’échelle, est 4,0 cm. 
De même, au point 5 : v5 = 0,20 m·s–1 
Sur le schéma le vecteur vitesse vԦ5 a une longueur de 
4,0 cm. 

On construit ΔvԦ4. On mesure sa norme. Sur le 
schéma, le vecteur a une longueur de 2,0 cm. 
Ainsi : ∆vԦ4 = 0,10 m·s–1 
La norme du vecteur accélération est : 

a4 = 
∆v4

2∆t
 = 

0,10

2 × 100 × 10–3 = 0,50 m·s–2 

Sur le schéma, le vecteur accélération aԦ4 a même 
sens et même direction que le vecteur ∆vԦ4. Sa 
longueur, compte tenu de l’échelle, est 5,0 cm. 
Vecteur vitesse au point 7 : v7 = 0,20 m·s–1 (4,0 cm 
sur le schéma). 
Vecteur vitesse au point 9 : v9 = 0,20 m·s–1 (4,0 cm 
sur le schéma). 
La construction de ∆vԦ8 a une longueur de 2,0 cm sur 
le schéma, soit ∆v8 = 0,10 m·s–1. On en déduit que 
a8 = 0,50 m·s–2. aԦ8 a même sens et même direction 
que le vecteur ∆vԦ8 (5,0 cm sur le schéma). 
Les deux vecteurs aԦ4 et aԦ8 ont même norme, mais 
leurs directions ne sont pas les mêmes. 

 
3. Pour tracer les vecteurs accélération : 
• au point 3 et au point 6 pour l’enregistrement 2 : 

Point 
considéré 

i 

Point où est 
mesurée la 
vitesse n 

Mesure de 
la distance 
Mn–1Mn+1 
(en cm) 

Norme de la 
vitesse en ce 

point vn 
(en m·s–1) 

Longueur de 
la flèche vԦn 

compte tenu 
de l’échelle 

(en cm) 

Mesure de la 
longueur de 

la flèche ∆vԦ1 
(en cm) 

Norme de la 
variation du 

vecteur 
vitesse ȴvi 
(en m·s–1) 

Norme de 
l’accélération 

ai 
(en m·s–2) 

Longueur de 
la flèche aሬԦ1 
compte tenu 
de l’échelle 

(en cm) 

i = 3 
n = i – 1 = 2 6,5 0,33 6,5 

3,9 0,20 0,98 9,8 
n = i + 1 = 4 4,9 0,25 4,9 

i = 6 
n = i – 1 = 5 4,1 0,21 4,1 

2,8 0,14 0,70 7,0 
n = i + 1 = 7 2,5 0,13 2,5 

 

• au point 3 et au point 7 pour l’enregistrement 3 : 

Point 
considéré 

i 

Point où est 
mesurée la 
vitesse n 

Mesure de 
la distance 
Mn–1Mn+1 
(en cm) 

Norme de la 
vitesse en ce 

point vn 
(en m·s–1) 

Longueur de 
la flèche vԦn 

compte tenu 
de l’échelle 

(en cm) 

Mesure de la 
longueur de 

la flèche ∆vԦ1 
(en cm) 

Norme de la 
variation du 

vecteur 
vitesse ȴvi 
(en m·s–1) 

Norme de 
l’accélération 

ai 
(en m·s–2) 

Longueur de 
la flèche aሬԦ1 
compte tenu 
de l’échelle 

(en cm) 

i = 3 
n = i – 1 = 2 2,15 0,11 2,15 

0 0 0 0 
n = i + 1 = 4 2,15 0,11 2,15 

i = 7 
n = i – 1 = 6 2,15 0,11 2,15 

0 0 0 0 
n = i + 1 = 8 2,15 0,11 2,15 

 

• au point 5 et au point 8 pour l’enregistrement 4 : 

Point 
considéré 

i 

Point où est 
mesurée la 
vitesse n 

Mesure de 
la distance 
Mn–1Mn+1 
(en cm) 

Norme de la 
vitesse en ce 

point vn 
(en m·s–1) 

Longueur de 
la flèche vԦn 

compte tenu 
de l’échelle 

(en cm) 

Mesure de la 
longueur de 

la flèche ∆vԦ1 
(en cm) 

Norme de la 
variation du 

vecteur 
vitesse ȴvi 
(en m·s–1) 

Norme de 
l’accélération 

ai 
(en m·s–2) 

Longueur de 
la flèche aሬԦ1 
compte tenu 
de l’échelle 

(en cm) 

i = 5 
n = i – 1 = 4 1,8 0,090 1,8 

1,1 0,055 0,28 2,8 
n = i + 1 = 6 2,9 0,15 2,9 

i = 8 
n = i – 1 = 7 3,5 0,18 3,5 

1,2 0,060 0,30 3,0 
n = i + 1 = 9 4,7 0,24 4,7 

 

Bilan 
• Pour l’enregistrement 1, l’accélération est non 
nulle. Elle est centripète. 
Pour l’enregistrement 2, l’accélération est non nulle, 
mais du fait du freinage elle n’est pas uniquement 
centripète. 
Pour l’enregistrement 3, l’accélération est nulle. 

Pour l’enregistrement 4 l’accélération est non nulle, 
et dirigée dans la direction et dans le sens du 
mouvement. 
• L’accélération est donc nulle uniquement pour un 
mouvement rectiligne uniforme (enregistrement 3). 
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ᬇ Étude d’un mouvement filmé 
Exemples de calculs réalisés avec Latis-Pro : 
 
 
 
 
 

 
 
 
Exemples de courbes obtenues : 
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1. a. Compte tenu des erreurs de pointage, la vitesse 
semble constante, en norme. 
b. vx diminue, sans devenir négative. vy, au début 
nulle, devient positive. 
Le vecteur vitesse, au départ entièrement dirigé selon 
l’axe des abscisses, est dévié dans la direction des 
ordonnées croissantes. 

 
Ces constatations sont en accord avec le mouvement 
de la bille. 
2. a. L’accélération semble non nulle entre t1 = 400 
ms et t2 = 700 ms. 
Attention pour comparer clairement ces mesures avec 
les positions sur la vidéo, il faut (avec le logiciel Latis-
Pro) repérer à quelles images les instants 
correspondent (en regardant par exemple dans le 
tableur). 

 
Dans ce cas, l’instant t1 = 400 ms correspond à la 9e 
ligne du tableur. 
Il faut ensuite prendre en compte le fait que l’image 1 
du tableur correspond à la première image sur laquelle 
la position de la bille a été repérée (la position du 
premier « clic »). 

Dans le cas envisagé, la 
balle se trouve à la 
première position cliquée 
(la 1re ligne du tableur) à 
la 4e image de la vidéo. 

 

C’est donc l’image 12 de la vidéo 
qui correspond à la 9e ligne du 
tableur, c’est-à-dire à l’instant 
t1 = 400 ms. 

 
Une fois ces précautions prises, on s’aperçoit que 
l’accélération devient non nulle au moment de la 
déviation de la bille. 
c. En rouge, la partie de la trajectoire où l’accélération 
est non nulle : 

 
Au moment de la déviation, la coordonnée ax devient 
négative, tandis que la coordonnée ay est positive. 
On en déduit l’orientation approximative du vecteur 
accélération aሬԦ. 

Bilan 
• C’est au moment de la déviation que l’accélération de 
la bille devient non nulle (et ce, alors même que la 
norme de la vitesse est constante). Alors même que la 
norme du vecteur vitesse est constante, l’accélération 
est non nulle au moment de la déviation. 
• En généralisant la construction réalisée ci-dessus, 
on peut dire que l’accélération est dirigée vers 
l’intérieur de la courbure de la trajectoire. 

 
 
ᬈ Mouvement circulaire 
1. 

 
a. Le mouvement de la cabine est tout d’abord 
circulaire accéléré (phase 1). 
Il devient ensuite circulaire uniforme. 
Pour la deuxième sous-question, l’idée est de laisser 
émerger la conception trop souvent partagée par les 
élèves qu’un point subit une accélération lorsque sa 
vitesse varie. On peut ainsi s’attendre à ce que les 
élèves disent que l’accélération sera non nulle dans 
la première phase du mouvement uniquement. 

b. #Calculs approchés des coordonnées des vitesses 
for i in range(1,N-2): 
    vx[i] = (x[i+1]-x[i-1])/(2*Dt) 
    vy[i] = (y[i+1]-y[i-1])/(2*Dt) 
#Calculs approchés des coordonnées des accélérations 
for i in range(2,N-3): 
    ax[i] = (vx[i+1]-vx[i-1])/(2*Dt) 
    ay[i] = (vy[i+1]-vy[i-1])/(2*Dt) 
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Le vecteur accélération n’est nul à aucun moment. 
Au départ, il n’est pas centripète. Ensuite, dans la 
deuxième phase du mouvement, il devient centripète. 
Il est à tout moment dirigé vers l’intérieur de la 
courbure. 
2. a. 

 
Le vecteur accélération s’exprime dans la base de 

Frenet : aሬԦ = at uሬԦt + an uሬԦn = 
dv
dt

 uሬԦt + 
v2

R
 uሬԦn 

Ainsi, at = 
dv
dt

   et   an = 
v2

R
. 

On sait que dans la première partie du mouvement, le 
mouvement de la cabine est accéléré, sa vitesse 

augmente. 
dv
dt

 > 0 et ainsi, at = 
dv
dt

 > 0. 
b. Comme, dans la deuxième partie du mouvement, la 

vitesse de la cabine devient constante, 
dv
dt

 = 0. 

Ainsi, at = 
dv
dt

 = 0. 
c. Lorsque la cabine ralentira, sa vitesse diminuera : 
dv
dt

 < 0 et ainsi, at = 
dv
dt

 < 0. La courbe prendra des 
valeurs négatives, puis s’annulera lorsque la cabine 

sera arrêtée : 
dv
dt

 = 0 implique at = 
dv
dt

 = 0. La courbe 
représentant at en fonction de t aura l’allure suivante. 

 
d. Lorsque la cabine a une vitesse stabilisée (en 
norme), l’accélération a seulement une composante 
normale, selon uሬԦn. Ainsi, l’accélération totale subie 
par la cabine correspond à la coordonnée an de 
l’accélération. Sur le graphique obtenu par le 
programme (en utilisant les coordonnées du réticule 
qui s’affiche en bas à droite de la fenêtre), on mesure 
une accélération finale : a = an = 36,4 m·s–2 

 

Cette accélération correspond à 3,71g. 

En effet : 
a
g
 = 

36,4
9,81

 = 3,71 

Cette valeur est donc assez proche de la valeur 
attendue (4g). 
3. a. Lorsque t א [0 s ; 2,65 s] : 

v(t) = kt at = 
dv
dt

 = k an = 
v2

R
 = 

(kt)2

R
 

À partir du demi-tour suivant, la norme de la vitesse 
est constante. Lorsque t 2,65[ א s ; +∞[ : 

vt = v0 at = 
dv
dt

 = 0 an = 
v2

R
 = 

(v0)2

R
 

#Calculs théoriques de l'accélération 
for i in range(1,N-1): 
    if temps[i] <= 2.65 : 
        anth[i] = (k*temps[i])**2/R 
        atth[i] = k 
    else : 
        anth[i] = v0**2/R 
        atth[i] = 0 

 
3. b. 
#Le fichier csv d'où l'importation des valeurs est 
effectuée 
fichier_importe = 'pointage_centrifugeuse_2.csv' 
#Ne pas modifier les 4 lignes suivantes 
with open(fichier_importe, newline='') as csvfile: 
    spamreader = csv.reader(csvfile, 
delimiter=' ;', quotechar='|') 
    for row in spamreader: 
        table.append(row) 
Dt = 0.100      #pas de temps en s 

 
Avec davantage de points, les courbes calculées se 
rapprochent des courbes théoriques. 
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Exercices 
Exercices 1 à 17 corrigés à la fin du manuel de l’élève. 
 
Exercices 18 à 20 corrigés dans le manuel de l’élève. 
 
21 a. Tracé du vecteur vitesse 

au point M3 : v3 = 
M2M4

2∆t
 

M2M4 = 5,0 m (sur la figure, 
2,5 cm). 

v3 = 
5,0

2 × 0,500
 = 5,0 m·s–1 

Sur le schéma, le vecteur vitesse 
vԦ3 a une longueur de 2,5 cm. 
On fait de même pour v5 et v11 : 
M4M6 = 5,0 m implique 

v5 = 
M4M6

2∆t
 = 5,0 m·s–1. 

Sur le schéma, le vecteur vitesse 
est tangent à la trajectoire, a le 
sens du mouvement et sa 
longueur, compte tenu de 
l’échelle, est de 2,5 cm. 
M10M12 = 5,0 m implique 

v11 = 
M10M12

2∆t
 = 5,0 m·s–1. 

Sur le schéma vԦ5 et vԦ11 ont tous 
deux une longueur de 2,5 cm. 
b. Voir la figure ci-contre. 
Le vecteur correspondant à la variation du vecteur vitesse est représenté par une flèche de longueur 0,55 cm : 
∆v4 = 1,1 m·s–1 

c. La norme du vecteur accélération est : a4 = 
∆v4

2∆t
 = 

1,1
2 × 0,500

 = 1,1 m·s–2 

Voir la figure ci-dessus. 
Sur le schéma, le vecteur accélération aሬԦ3 a le même sens et la même direction que ΔvԦ4. 
Sa longueur, compte tenu de l’échelle, est de 4,4 cm. 
d. Le mouvement est uniforme. 
 
22 1. t : le temps en secondes (s) 
∆t : une durée en secondes (s) 
x(t) : l’abscisse du point en mètres (m) 
v(t) : la norme du vecteur vitesse en mètres par seconde (m·s–1) 
vx(t) : la coordonnée selon l’axe (Ox) du vecteur vitesse en mètres par seconde (m·s–1) 
R : une distance qui s’exprime en mètres (m) 
Une accélération s’exprime en mètres par seconde carré (m·s–2). 

2. a. 
v(t)2

R
 est en m·s–2. C’est une formule compatible avec une accélération. 

b. 
dx
dt

(t) est en m·s–1. Ce n’est pas une formule compatible avec une accélération. 

c. 
d2vx
dt2

(t) est en m·s–3. Ce n’est pas une formule compatible avec une accélération. 

d. vx(t + ∆t) – vx(t – ∆t) est en m·s–1. Ce n’est pas une formule compatible avec une accélération. 

e. 
d2x
dt2

(t) est en m·s–2. C’est une formule compatible avec une accélération. 

f. 
v(t)
R2  est en m–1·s–1. Ce n’est pas une formule compatible avec une accélération. 

g. 
vx(t + ∆t) – vx(t – ∆t)

2∆t
 est en m·s–2. C’est une formule compatible avec une accélération. 

h. 
v(t)
R

 est en s–1. Ce n’est pas une formule compatible avec une accélération. 

i. 
dvx
dt

(t) est en m·s–2. C’est une formule compatible avec une accélération. 
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23 a. x(t) et y(t) sont en mètres. Ainsi : 
• 1,50 est en mètres par secondes carré (m·s–2). 
• 8,33 est en mètres (m). 
• 2,50 est en mètres par secondes au cube (m·s–3). 
• 5,72 est en mètres par secondes (m·s–1). 
b. À t = 0 s, x(t = 0) = 8,33 m  et  y(t = 0) = 0 m. 
c. vx(t) = 3,0t vy(t) = 7,50t2 – 5,72 
d. ax(t) = 3,0 ay(t) = 15,0t 
 
24 a. Le mouvement 1 est rectiligne uniforme. 
Le mouvement 2 est rectiligne accéléré (la norme de 
la vitesse augmente). 
Le mouvement 3 est rectiligne décéléré (la norme de 
la vitesse diminue). 
b. Le mouvement 1 est rectiligne uniforme : ax(t) = 0 
Le mouvement 2 est rectiligne accéléré (la norme de 
la vitesse augmente) : ax(t) > 0 
Le mouvement 3 est rectiligne décéléré (la norme de 
la vitesse diminue) : ax(t) < 0 
c. Le vecteur accélération : 
• pour le mouvement 1 (rectiligne uniforme), est nul ; 
• pour le mouvement 2 (rectiligne accéléré), est dans 
le sens du mouvement (de gauche à droite) ; 
• pour le mouvement 3 (rectiligne décéléré), est dans 
le sens opposé du mouvement (de droite à gauche). 
 
25 a. Un mouvement rectiligne désigne la trajectoire 
(droite) d’un mouvement. Un mouvement uniforme 
désigne la norme de la vitesse (constante). Les deux 
termes sont donc indépendants l’un de l’autre. L’un 
n’implique donc pas l’autre. 
b. L’accélération est nulle uniquement pour les 
mouvements rectilignes uniformes. Pour les 
mouvements autres (circulaires ou curvilignes) 
l’accélération sera non nulle même si le mouvement 
est uniforme. 
c. Un mouvement accéléré se fait avec une accélération 
non nulle. Uniformément accéléré implique, en plus, 
que cette accélération reste constante. 
d. Un point qui ralentit, n’a pas un mouvement 
rectiligne uniforme. Il subit donc une accélération. Il 
est donc accéléré. Le sens de l’accélération est 
opposé au sens du mouvement. 
e. La composante selon uሬԦn ne peut pas être nulle (si le 
mouvement est circulaire). Ainsi, un mouvement 
circulaire se fait nécessairement avec une accélération. 
f. Il y a deux termes à l’accélération donnée dans le 
repère de Frenet. Si le mouvement circulaire n’est pas 
uniforme, la composante selon uሬԦt n’est pas nulle. 
 
Exercice 26 corrigé à la fin du manuel de l’élève. 
 
27 a. b. c. d. 

vx (en m·s–1) 1,50 1,50 –2,0 2,0 

vy (en m·s–1) –1,50 3,00 4,0 4,0 

v (en m·s–1) 2,12 3,35 4,5 4,5 

En effet, v = ට(vx)2 + (vy)2. 

28 a. aሬԦ(t) = 
dv
dt

(t) uԦt + 
v(t)2

R
 uԦn 

uԦt est tangent à la 
trajectoire, son sens 
correspond au sens du 
mouvement. uԦn est dirigé 
selon le rayon du cercle, 
vers le centre de celui-ci. 
b. Compte tenu de l’expression de l’accélération, le 

premier terme peut s’annuler si 
dv
dt

(t) = 0, c’est-à-dire 
si le mouvement devient uniforme. 
Le deuxième terme ne peut s’annuler que si v(t) 
devient nulle (absence de mouvement) ou si R 
devient infini (le mouvement devient alors rectiligne). 
Ainsi, il ne peut y avoir de mouvement circulaire sans 
accélération. 
c. L’expression de l’accélération dans le repère de 
Frenet montre que le terme selon uԦn est 
nécessairement positif. Le vecteur accélération sera 
donc toujours dirigé vers l’intérieur de la courbure, ce 
qui exclut le schéma 4, indépendamment de la 
situation physique envisagée. 

Situation 1. La vitesse augmente en norme : 
dv
dt

(t) > 0. 

Ainsi, la partie de l’accélération dirigée selon uԦt est 
dans le sens de uԦt. 
Le schéma correspondant est le schéma 2. 

Situation 2. La vitesse diminue en norme : 
dv
dt

(t) < 0. 

Ainsi, la partie de l’accélération dirigée selon uԦt est 
dans le sens opposé à uԦt. 
Le schéma correspondant est le schéma 1. 
Situation 3. La vitesse est constante en norme : 
dv
dt

(t) = 0. Ainsi, la partie de l’accélération dirigée 

selon uԦt est nulle. L’accélération est dirigée 
uniquement selon uԦn. 
Le schéma correspondant est le schéma 3. 
 
29 a. Si la vitesse est multipliée par 2, l’accélération 
est multipliée par 4 : 

si v’ = 2v, alors a’ = 
(2v)2

R
 = 

4v2

R
 = 4a. 

b. Si le rayon est multiplié par 2, l’accélération est 
divisée par 2 : 

si R’ = 2R, alors a’ = 
v2
2R

 = 
a
2
. 

c. Si le rayon est divisé par 2, l’accélération est 
multipliée par 2 : 

si R’ = 
R
2
, alors a’ = 

v2
R
2

 = 
2v2

R
 = 2a. 

 
30 a. La tangente à la courbe est horizontale à 
l’instant initial. On en déduit que la vitesse de la 
fusée est nulle à l’instant initial. 
b. On observe que le coefficient directeur des 
tangentes à la courbe augmente au cours du temps. 
La vitesse de la fusée augmente au fur et à mesure 
que le temps passe. 
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c. 

 

À t1 = 4,0 s, vx(t1) = 
xB – xA
tB – tA

 = 
3 500 – 0
8,0 – 2,0

 = 5,8 × 102 m·s–1. 

À t2 = 8,0 s, vx(t2) = 
xD – xC
tD – tC

 = 
7 000 – 0
10,0 – 4,0

 = 1,2 × 103 m·s–1. 

d. Vérifions s’il y a proportionnalité entre vx(t) et t : 
vx(t) 
(en m·s–1) 0 5,8 × 102 1,2 × 103 

t (en s) 0 4,0 8,0 

k = 
vx(t)

t
 

(en m·s–2) 

Compatible 
avec tous les 
coefficients de 
proportionnalité 

1,5 × 102 1,5 × 102 

vx(t) et t semblent proportionnels. Le coefficient de 
proportionnalité (égal à l’accélération de la fusée) est 
k = 1,5 × 102 m·s–2 = 15g. 
 
31 a. Le mouvement est rectiligne (énoncé). On 
choisit l’axe (Ox) comme correspondant à la direction 
et au sens du mouvement. La courbe représentant 
vx(t) pour l’enregistrement 1 est une droite 
(décroissante), son coefficient directeur est une 
constante (négative). ax(t) sera constante tout au 
long du mouvement. On a affaire à un mouvement 
rectiligne uniformément accéléré. 
b. Le mouvement est rectiligne (énoncé). On choisit 
l’axe (Ox) comme correspondant à la direction et au 
sens du mouvement. La courbe représentant vx(t) pour 
l’enregistrement 2 n’est pas une droite, le coefficient 
directeur de sa tangente en chaque point varie au 
cours du mouvement. ax(t) ne sera pas constante tout 
au long du mouvement. On a affaire à un mouvement 
rectiligne accéléré (non uniformément). 
c. Pour l’enregistrement 1 : 

ax(t1) = 
vxB  – vxA
 tB – tA

 = 
0 – 0,10
5,0 – 0

 = –2,0 × 10–2 m·s–2 

En norme, a(t1) = 2,0 × 10–2 m·s–2. 

 
Pour l’enregistrement 2 : 

ax(t1) = 
vxB  – vxA
 tB – tA

 = 
0 – 0,10
2,0 – 0

 = –5,0 × 10–2 m·s–2. 

En norme, a(t1) = 5,0 × 10–2 m·s–2. 

 
 
32 a. 

 
 

Instant 0 1 2 3 

Accélération 
(en m·s–2) 

ax 

= 
0 – 0,10

2,0 – 0
 

= –5,0 
× 10–2 

ax 

= 
0 – 0,09

3,0 – 0
 

= –3,0 
× 10–2 

ax 

= 
0 – 0,07

4,0 – 0
 

= –1,8 
× 10–2 

ax 

= 
0 – 0,055

5,0 – 0
 

= –1,1 
× 10–2 

 

b. 

 
c. L’accélération n’étant pas constante, le 
mouvement n’est pas uniformément accéléré. 
 
33 a. Voir schéma ci-contre. 

b. aԦ(t) = 
dv
dt

(t) uԦt + 
v(t)2

R
 uԦn 

Si le mouvement est 

uniforme, 
dv
dt

(t) = 0. 
L’accélération est dans ce 
cas dirigée selon le vecteur 

normal uԦn : aԦ(t) = 
v2

R
 uԦn 

 
34 1. Les données de la troisième colonne 
correspondent à l’explicitation de combien la norme 
de la vitesse va augmenter et en combien de temps. 
Ce n’est pas une donnée directe de la norme de 
l’accélération qui s’exprime en m·s–2. 
2. a. Un mouvement est rectiligne uniformément 
accéléré, si sa trajectoire est une droite (rectiligne) 
et si l’accélération aԦ(t) du point est constante au 
cours du mouvement. 
b. Si le mouvement est rectiligne uniformément 
accéléré, le mouvement se fera selon un seul axe 

((Ox), par exemple). Ainsi, a(t) = ax(t) = 
dvx
dt

(t) = 
dv
dt

(t). 
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Si la norme de l’accélération est constante, alors 

a(t) = a = 
dv
dt

 = 
∆v
∆t

. Dans ce calcul, ∆v doit être en 
m·s–1 et ∆t en secondes. 
Montagnes 

russes 
Vitesse 

maximale 
Accélération 

maximale 
Accélération 

(en m·s–2) 
Formula 
Rossa 240 km·h–1 0-240 km·h–1 

en 4 s 17 

Ring Racer 217 km·h–1 0-217 km·h–1 
en 2,5 s 24 

Top Thrill 
Dragster 193 km·h–1 0-193 km·h–1 

en 4 s 13 

Dodonpa 172 km·h–1 0-172 km·h–1 
en 1,8 s 26 

3. Le passager aura le plus de sensations dans le 
parc Dodonpa. Malgré sa quatrième place au 
classement des vitesses maximales, c’est lui qui 
offre l’accélération la plus grande. 
 
35 a. Le point peut avoir une vitesse constante en 
norme mais avoir une vitesse qui ne serait pas 
constante vectoriellement. Ainsi, le point pourrait 
subir une accélération avec un mouvement uniforme. 

b. Dans le repère de Frenet : aԦ(t) = 
dv
dt

(t) uԦt + 
v(t)2

R
 uԦn 

Si la norme de la vitesse v(t) est constante 
dv
dt

(t) = 0. 

Ainsi, l’accélération sera : aԦ(t) = 
v2

R
 uԦn 

Elle sera portée par le vecteur unitaire uԦn (dirigé du 
point vers le centre de la courbure). 

c. aԦ(t) = 
v2

R
 uԦn 

En norme, a = 
v2

R
. Si v = 300 km·h–1 = 83,3 m·s–1 et 

a = 10g = 10 × 9,81 = 98,1 m·s–2, on obtiendrait 

R = 
v2

a
 = 

83,32

98,1
 = 70,7 m. La trajectoire de l’avion 

serait un cercle de rayon R = 70,7 m. 
 
Exercice 36 corrigé à la fin du manuel de l’élève. 
 

37 a. vx(t) = 
dx
dt

(t) = 5,76 m·s–1 

vy(t) = 
dy
dt

(t) = 1,95 m·s–1 
b. Les coordonnées du vecteur vitesse sont 
constantes, le vecteur vitesse est constant. Si le 
vecteur vitesse est constant, sa norme l’est aussi. 
Si, à tout moment, le vecteur vitesse est constant, 
alors le mouvement est rectiligne. Le mouvement est 
rectiligne uniforme, son accélération est donc nulle. 

ax(t) = 
dvx
dt

(t) = 0 ay(t) = 
dvy
dt

(t) = 0 
Le vecteur accélération est nul. 
c. vx(t) = 5,76 m·s–1 vy(t) = 1,95 m·s–1 

La norme de la vitesse est v(t) = ට�vx(t)�2 + ቀvy(t)ቁ 2. 

v(t) = ඥ(5,76)2 + (1,95)2 = 6,08 m·s–1 
Pour déterminer l’angle entre l’horizontal et la 
direction du mouvement, nous allons déterminer 
l’angle entre l’horizontale et le vecteur vitesse. 

Le triangle est rectangle, 
on peut utiliser les 
relations trigonométriques : 

tan(ɲ) = 
vy
vx

 = 
1,95
5,76

 

ɲ = 18,7° 
 
38 a. Le vecteur vitesse vԦ(t) ne pourrait pas être 
constant. En effet, la direction du mouvement change 
au cours du mouvement. 
b. Le vecteur vitesse n’est pas constant implique 
que le vecteur accélération ne peut pas être nul. 
c. Le mouvement serait alors circulaire uniforme. 
d. Dans le repère de Frenet : 

aԦ(t) = 
dv
dt

(t) uԦt + 
v(t)2

R
 uԦn 

Si la norme de la vitesse v(t) est constante, alors 
dv
dt

(t) = 0. Ainsi, l’accélération sera : aԦ(t) = 
v2

R
 uԦn 

e. aԦ(t) = 
v2

R
 uԦn En norme, a = 

v2

R
   avec : 

R = 6 371 + 8,848 = 6 380 km = 6,380 × 106 m 

Or v = ξaR = ඥ9,80 × 6,380 × 106 
v = 7,91 × 103 m·s–1 = 2,85 × 104 km·h–1 

Cette vitesse correspondrait à 
2,85 × 104

1 235
 = 23,0 fois 

la vitesse du son (Mach 23,0). 
 

39 a. vx(t) = 
dx
dt

(t) = 20,0t – 2,00t2 

b. ax(t) = 
dvx
dt

(t) = 20,0 – 4,00t 

c. Le mouvement est rectiligne (énoncé) et accéléré. 
Le mouvement n’est pas uniformément accéléré car 
la norme de l’accélération n’est pas constante. 
d. À t0 = 0 s : a(t0) = 20,0 – 4,00t0 = 20,0 m·s–2 
À t1 = 5,0 s : a(t1) = 20,0 – 4,00t1 = 0 m·s–2 
e. v(t1) = 20,0t1 – 2,00t1

2 = 50 m·s–1 = 1,8 × 102 km·h–1 
f. x(t1) = 10,0t1

2 – 0,667t1
3 = 1,7 × 102 m 

 

40 a. ax(t) = 10 m·s–2 or ax(t) = 
dvx
dt

(t) 
donc vx(t) = 10t + K   avec K une constante. 
Or à t = 0, vx(0) = K = 0. Ainsi, vx(t) = 10t. 

b. vx(t) = 
dx
dt

(t) 
donc x(t) = 5,0t2 + K’ avec K’ une constante. 
Or, si on choisit x(0) = 0, x(t) = 5,0t2. 
c. L’instant t1 correspond à l’instant où : 
v(t1) = vmax = 306,1 m·s–1 or v(t1) = 10t1. 
Ainsi, t1 = 

vmax

10
 = 31 s. 

La distance parcourue pendant cette phase est : 
x(t1) = 5,0t1

2 = 4,8 × 103 m 
d. Pour permettre à la capsule d’atteindre sa vitesse 
maximale, il faudrait donc un trajet minimum de 
9,6 × 103 m soit environ 9,6 km. 
Sur de grands trajets (Paris-Marseille, par exemple) 
cette phase d’accélération serait négligeable devant 
la distance à parcourir. 
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41 a. vx(t) = 
dx
dt

(t) = ʘRcos(ʘt) 

vy(t) = 
dy
dt

(t) = –ʘRsin(ʘt) 

b. Le mouvement est uniforme si la norme de sa 

vitesse est constante : v(t) = ට�vx(t)�2 + ቀvy(t)ቁ 2 

Ici, v(t) = ට(ʘRcos(ʘt))2 + �–ʘRsin(ʘt)�2 

v(t) = ඥʘ2R2(cos2(ʘt) + sin2(ʘt)) 
Or cos2(x) + sin2(x) = 1   donc v(t) = ξʘ2R2 = ʘR. 
Le mouvement est uniforme, mais le mouvement 
n’est pas rectiligne. 

c. ax(t) = 
dvx
dt

(t) = –ʘ2Rsin(ʘt) 

ay(t) = 
dvy
dt

(t) = –ʘ2Rcos(ʘt) 

d. Comme les valeurs de ax(t) et ay(t) changent au 
cours du mouvement, l’accélération de la voiture 
n’est pas constante. 

Norme de l’accélération : a(t) = ට�ax(t)�2 + ቀay(t)ቁ 2 

a(t) = ට(–ʘ2Rsin(ʘt))2 + �–ʘ2Rcos(ʘt)�2 

a(t) = ඥʘ4R2(sin2(ʘt) + cos2(ʘt)) 
Or cos2(x) + sin2(x) = 1   donc a(t) = ඥʘ4R2 = ʘ2R. 
La norme de l’accélération est constante. 
e. Réalisons le produit scalaire entre les vecteurs aԦ(t) 
et vԦ(t) : aԦ(t)·vԦ(t) = ax(t) × vx(t) + ay(t) × vy(t) 

aԦ(t)·vԦ(t) = –ʘ2Rsin(ʘt) × ʘRcos(ʘt) 
+ (–ʘ2Rcos(ʘt)) × (–ʘRsin(ʘt)) 

aԦ(t)·vԦ(t) = –ʘ3R2sin(ʘt)cos(ʘt) + ʘ3R2sin(ʘt)cos(ʘt) 

aԦ(t)·vԦ(t) = 0 : les vecteurs aԦ(t) et vԦ(t) sont orthogonaux. 
f. Dans le repère de Frenet : 

vԦ(t) = v(t) uԦt aԦ(t) = 
dv
dt

(t) uԦt + 
v(t)2

R
 uԦn 

Ici, le mouvement est uniforme : v(t) = v  et  
dv
dt

(t) = 0 

On obtient dans ce cas : vԦ(t) = v uԦt   et   aԦ(t) = 
v2

R
 uԦn 

Le vecteur vԦ(t) est dirigé selon le vecteur unitaire uԦt, 
tandis que le vecteur aԦ(t) est dirigé selon le vecteur 
unitaire uԦn. Les deux vecteurs sont donc orthogonaux. 

42 Le mouvement est supposé rectiligne 
uniformément accéléré. Cela implique que 
l’accélération de l’avion se fait selon un axe unique 
(ici, (Ox)) et est constante vectoriellement. 

Cela implique que a(t) = ቀax0 ቁ   ax étant constante. 

Comme ax = 
dvx
dt

(t), cela implique que : 

vx(t) = axt + k   avec k une constante. 
À t = 0 s, vx(0) = 0 m·s–1. Ainsi, vx(t) = axt. 

Comme vx(t) = 
dx
dt

(t), on obtient : 

x(t) = 
1
2
axt2 + k’   avec k’ une constante. 

À t = 0 s, x(0) = 0 m. Ainsi, x(t) = 
1
2
axt2. 

Voyons à présent le texte. Lorsque l’avion parcourt 
75 m (x(t1) = 75 m), l’avion passe de 0 à 250 km·h–1 
(vx(t1) = 69,4 m·s–1). Ainsi : 

x(t1) = 
1
2
axt1

2 vx(t1) = axt1 
Trouvons l’expression de t1 grâce à la deuxième 

égalité : t1 = 
vx(t1)

ax
 d’où x(t1) = 

1
2

 vx(t1)2
ax

 

Et enfin : ax = 
1
2

 vx(t1)2
x(t1)  

Application numérique : ax = 
1
2

 69,42
75

 = 32 m·s–2 = 3,3g 
 
Exercice 43 corrigé à l’adresse hatier-clic.fr/pct308 

 
  

https://www.hatier-clic.fr/pct308
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44 1.1. v0x = 
x1
∆t

 = 
1,0 × 0,50

0,10
 = 5,0 m·s–1 v0y = 

y1
∆t

 = 
1,7 × 0,50

0,10
 = 8,5 m·s–1 

1.2. 

 

v0x = v0cos(ɲ) 

v0y = v0sin(ɲ) 

Ainsi, 
v0y

v0x
 = 

sin(ɲ)
cos(ɲ)

 = tan(ɲ). 

Application numérique : tan(ɲ) = 
8,5
5,0

 = 1,7 ɲ = 60° 

De plus, la norme de la vitesse à l’instant initial est : v0 = ට(v0x)2 + (v0y)2 =  ඥ(5,0)2 + (8,5)2 = 10 m·s–1 

2.1. M3M5 = 1,4 m (2,8 cm sur la figure) : v4 = 
M3M5

2∆t
 = 

1,4
2 × 0,10

 = 7,0 m·s–1 

M5M7 = 1,15 m (2,3 cm sur la figure) : v6 = 
M5M7

2∆t
 = 

1,15
2 × 0,10

 = 5,8 m·s–1 

2.2. Sur le schéma le vecteur vitesse vԦ4 a une longueur de 3,5 cm, vԦ6 a une longueur de 2,9 cm. 
 

 

 
2.3. Sur le schéma la variation du vecteur vitesse a 
une longueur de 1,1 cm : ∆v5 = 2,2 m·s–1 
2.4. La norme du vecteur accélération est : 

a5 = 
∆v5

2∆t
 = 

1,8
2 × 0,10

 = 11 m·s–2 

Sur le schéma le vecteur accélération aԦ5 a même 
sens et même direction que le vecteur ∆vԦ5. Sa 
longueur, compte tenu de l’échelle, est de 5,5 cm. 
3. Le vecteur accélération est vertical, dirigé vers le 
bas. Sa norme est assez proche de l’accélération 
théorique (9,81 m·s�2). Compte tenu des erreurs de 
mesures et de constructions possibles, il semble 
que le vecteur accélération aԦ5 correspond au vecteur 
champ de pesanteur terrestre gሬԦ. 
4.1. La durée entre deux positions est nommée dt. 

4.2. La vitesse instantanée est calculée, pour une 
position donnée, comme la vitesse moyenne entre la 
position d’avant et la position d’après. 
4.3. Pour la première position, nous ne disposons 
pas de la position d’avant ; pour la dernière position, 
nous ne disposons pas de la position d’après. Ainsi, 
la méthode précédente ne peut être utilisée pour 
calculer les coordonnées de la vitesse. 
4.4. for i in range(2,n-2) : 
     ax.append((vx[i+1]-vx[i-1])/(2*dt)) 
     ay.append((vy[i+1]-vy[i-1])/(2*dt)) 
4.5. N’ayant pu calculer les premières et les 
dernières coordonnées de la vitesse, nous ne 
pouvons, en utilisant le code de la question 4.4., 
calculer les coordonnées des deux premières et deux 
dernières coordonnées de l’accélération. 
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45 A. 1.1. aԦ1 = 
dvԦ
dt

(t) 

L’accélération de la voiture se fait selon un axe 
unique (ici, (Ox)). Cela implique que : 
aԦ(t) = ax(t)iԦ   et   vԦ(t) = vx(t) iԦ 
Ainsi, ax(t) = 

dvx
dt

(t). 

Le mouvement étant dirigé selon (Ox), vx est positif à 
tout moment du mouvement. 
La voiture accélérant, le vecteur accélération est 
dirigé aussi selon (Ox), ax est donc positif à tout 

moment. En norme, a1(t) = 
dv
dt

(t)   or a1 est constante : 
v(t) = a1t + k   avec k une constante. 
Or à t = 0, on a v(t = 0) = k = v0. Ainsi, v(t) = a1t + v0. 
1.2. À t = t1 = 5,4 s, v(t1) = vA. 
Soit v(t1) = a1t1 + v0 = vA. 

Ainsi, a1 = 
vA – v0

t1
 = 

70
3,6

 – 30
3,6

5,4
 = 2,1 m·s–2. 

2.1. vx(t) = 
dx
dt

(t) = a1t + v0 

x(t) = 
1
2
a1t2 + v0t + k’   avec k’ une constante. 

Or à t = 0, x(0) = k’ = 0. Ainsi, x(t) = 
1
2
a1t2 + v0t. 

2.2. La distance D parcourue par la Logan 

correspond à x(t1) : x(t1) = 
1
2
a1t1

2 + v0t1 = D 

D = 
1
2
 × 2,1 × 5,42 + 

30
3,6

 × 5,4 = 76 m 

B. 1.1. Les normes des vitesses sont : 

v3 = 
G2G4

2ʏ
   et   v5 = 

G4G6

2ʏ
 

1.2. G2G4 et G4G6 sont égales à 21 m (2,1 cm sur la 

figure). Donc v3 = v5 = 
21

2 × 1,00
 = 11 m·s–1 = 40 km·h–1. 

1.3. En tenant compte de l’échelle proposée, les 
vecteurs auront une taille de 5,5 cm. 
1.4. Sur le schéma, la variation du vecteur vitesse au 
point 4 mesure 2,5 cm. Ainsi, ∆v4 = 5,0 m·s–1. 

 

 
 

2.1. On peut calculer le vecteur accélération approchée : aԦ4 = 
∆vԦ4
2ʏ

 

2.2. En norme : a4 = 
∆v4

2ʏ
 = 

5,0
2 × 1,00

 = 2,5 m·s–2 

3.1. En physique, on utilise plutôt le terme d’accélération radiale. 
(On peut même ajouter centripète car le sens de l’accélération est orienté vers le centre du cercle.) 

3.2. Comparons la valeur de l’accélération obtenue et l’accélération de pesanteur : 
a4

g
 = 

2,5
9,81

 = 0,26 

Cette accélération est donc négligeable devant l’accélération de pesanteur. 
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11. Mouvement et forces 
Activités p. 316 à 319 

ᬅ Les Principia 
1. Voir les biographies sur Wikipédia, par exemple. 
2. a. Dans la première loi de Newton moderne, il y a 
équivalence entre le fait pour un système d’être au 
repos ou en mouvement rectiligne et uniforme dans 
un référentiel galiléen et le fait de n’être soumis à 
aucune force ou à des forces de somme nulle. C’est 
bien ce qui est dit dans l’énoncé historique, avec « à 
moins que… ». S’il n’y a pas de force, alors l’état de 
repos ou de mouvement rectiligne et uniforme 
persévèrent. S’il y a une force, alors cet état change. 
b. La notion de référentiel galiléen est absente de 
l’énoncé historique. 
c. La deuxième loi de Newton figure en filigrane, 
puisque les commentaires introduisent le fait que les 
changements sont liés aux forces (gravité, 
frottements). 
3. a. On retrouve la notion de variation de vitesse 
(changements dans le mouvement), somme des 
forces (force motrice), colinéaires (dans la ligne 
droite). 
b. La notion d’accélération n’est pas formulée 
clairement, non plus que le fait que c’est la masse 
qui lie force et accélération. La notion de référentiel 
galiléen n’est pas non plus présente. 
c. Ces commentaires pourraient se traduire ainsi : le 
vecteur force et la variation du vecteur vitesse sont 
proportionnels. 

Bilan 
• Dans la vision de Newton, la force est la cause des 
modifications du mouvement, pas du mouvement lui-
même. 
 
ᬆ Première loi de Newton 
1. a. On réalise l’étape 2 du protocole plusieurs fois, 
afin d’en faire une moyenne. On mesure 28 gouttes 
pour 1 mL. 
Le volume d’une goutte est donc V = 3,6 × 10–8 m3. 
Le rayon d’une goutte est donc r = 2,0 × 10–3 m. 
b. On obtient les valeurs et le graphique suivants. 
z (en m) 0 0,0193 0,0386 0,0579 0,0772 0,0965 

t (en s) 0 2,59 5,02 7,72 10,05 12,4 
 

z (en m) 0,1158 0,1351 0,1544 0,1737 0,193 0,2123 

t (en s) 14,89 17,29 19,8 22,32 24,9 27,17 

 

C’est un mouvement rectiligne et uniforme, 
d’équation z = vt. On trouve v = 7,78 × 10–3 m·s–1. 
2. a. La goutte subit : 
- son poids PሬԦ de direction verticale et dirigé vers 
le bas ; 
- la poussée d’Archimède FሬԦ de direction 
verticale et dirigée vers le haut ; 
- la force de frottements fluides fԦ de direction 
verticale et dirigée vers le haut. 
b. P = ρgVg 
  P = 1,0 × 103 × 3,6 × 10–8 × 9,81 
  P = 3,5 × 10–4 N 
F = ρhVg = 9,0 × 102 × 3,6 × 10–8 × 9,81 
F = 3,2 × 10–4 N 
c. La vitesse est constante et la trajectoire est 
rectiligne. D’après la première loi de Newton, la 
somme vectorielle des forces est nulle. 
On en déduit : PሬԦ + FሬԦ + fԦ = 0ሬሬԦ 
soit : P = F + f   d’où f = P – F = 3 × 10–5 N 

f = 6πɻrv   donc ɻ = 
f

6πrv
 = 10 × 10–2 Pa·s. 

Théoriquement, ɻ = 8 × 10–2 Pa·s, l’écart est assez 
élevé. La mesure effectuée peut donc être considérée 
comme non fiable (mais comme la donnée n’a qu’un 
chiffre significatif, on peut imaginer que la valeur de la 
viscosité est mal connue ; en tout cas, l’ordre de 
grandeur est bon). 
3. Le volume de la goutte est la principale source 
d’erreur : le volume d’une goutte n’est probablement 
pas le même à chaque manipulation. Le volume 
mesuré à l’étape 2 du protocole ne correspond 
probablement pas au volume de la goutte utilisée lors 
des mesures dans l’éprouvette. 
Il y a également une source d’erreur sur la masse 
volumique et la viscosité de l’huile utilisée : les 
valeurs données dans l’activité ne sont pas 
précisément celles de l’huile utilisée ; de plus, ces 
valeurs dépendent de la température. 
La prise de mesures sur les temps de passage de la 
goutte aux différentes positions constitue également 
une source d’erreur pour le calcul de la vitesse. 

Bilan 
• Après avoir fait le bilan des forces s’exerçant sur le 
système étudié, la première loi de Newton nous 
donne une relation vectorielle entre ces forces. Après 
projections sur les différents axes, il est possible de 
calculer la norme d’une force, connaissant la norme 
des autres forces à partir des données du problème. 
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ᬇ Deuxième loi de Newton 
1. On utilise une balle de ping-pong et un plan incliné. 
On mesure m = 2,7 g ; h = 13 cm, d = 90 cm donc ɽ = 8,2°. 
La courbe obtenue après pointage est donnée ci-dessous. 
La modélisation avec une équation d’ordre 2 de la forme z = at2 + bt + c donne : 
a = 0,418 m·s–2 b = –7,426 × 10–3 m·s–1 c = –3,532 × 10–3 m 

 
 
2. a. Le système {balle} subit : 
- son poids PԦ de direction verticale et dirigé vers le 
bas ; 
- la réaction normale du support NሬሬԦ de direction 
perpendiculaire au banc 
et dirigée vers le haut ; 
- la force de frottement 
avec le support fԦ de 
direction parallèle au 
banc et dirigée dans le 
sens opposé au 
mouvement. 
b. Voir schéma ci-contre. 
c. La deuxième loi de Newton s’écrit : PሬԦ + NሬሬԦ + fԦ = maሬԦ 
En projection le long de l’axe (Oz), on obtient : 
mgsinɽ – f = maz 

soit az = 
mgsinɽ – f

m
 = gsinɽ – 

f
m

. 

d. Par définition, l’accélération aሬԦ est liée à la vitesse vԦ 

du système par aԦ = 
dvԦ
dt

 soit, en projection sur l’axe (Oz), 

az = 
dvz
dt

. Cela donne 
dvz
dt

 = gsinɽ – 
f
m

. 

Par intégration, on obtient : vz(t) = ቀgsinɽ – f
m
ቁ t 

(La constante d’intégration est nulle car on lâche la 
balle sans vitesse initiale.) 

On a donc vz = 
dz
dt

   soit z(t) = 
1
2
ቀg sin ɽ – f

m
ቁt2. 

(La constante d’intégration est nulle car on lâche la 
balle depuis z = 0). 
3. a. D’après la modélisation, on voit que les 
paramètres b et c sont négligeables devant le 
paramètre a. On en déduit que la courbe obtenue est 
de la forme z = at2 où a = 0,418 m·s–2. 

Théoriquement, on trouve z(t) = 
1
2

(g sin ɽ)t2. 
Ces deux expressions sont en adéquation pour 

a = 
1
2
ቀg sin ɽ – f

m
ቁ. 

Les hypothèses effectuées sont bien valables ici. 
b. Par comparaison, on en déduit l’expression de f : 
f = m(gsinɽ – 2a) = 1,5 × 10–3 N 

Bilan 
• On réalise le pointage vidéo du mouvement étudié. 
On modélise la courbe (ou les courbes si plusieurs 
dimensions) avec une fonction adaptée et on 
récupère la valeur des paramètres. Par ailleurs, on 
utilise la deuxième loi de Newton pour relier la somme 
vectorielle des forces avec le vecteur accélération. Par 
intégrations successives, on obtient les coordonnées 
du vecteur position. Par identification avec les 
courbes modélisées après pointage, on peut 
déterminer les valeurs manquantes du problème. 
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ᬈ Mouvement d’un pendule 
1. a. Pour le point 3, on mesure M2M4 = 0,135 m 

donc v3 = 
M2M4

2∆t
 = 

0,135
2 × 0,067

 = 1,01 m·s–1. 

De même, pour le point 5, M4M6 = 0,24 m 

donc v5 = 
M4M6

2∆t
 = 

0,24
2 × 0,067

 = 1,78 m·s–1. 

Pour le point 9, on mesure M8M10 = 0,32 m 

donc v9 = 
M8M10

2∆t
 = 

0,32
2 × 0,067

 = 2,37 m·s–1. 

De même, pour le point 11, M10M12 = 0,28 m 

donc v11 = 
M10M12

2∆t
 = 

0,28
2 × 0,067

 = 2,11 m·s–1. 

b. Voir schéma ci-dessous. Le tracé des vecteurs 
donne Δv4 = 0,9 m·s–1   et   Δv10 = 0,65 m·s–1. 
c. On calcule la norme de l’accélération : 

a4 = 
Δv4

2∆t
 = 

0,9
2 × 0,067

 = 6,7 m·s–2 

et a10 = 
Δv10

2 × ∆t
 = 

0,65
2 × 0,067

 = 4,9 m·s–2 

Donc ma4 = 0,67 N et ma10 = 0,49 N. 
d. Voir schéma ci-dessous. 

e. P = mg = 0,100 × 9,81 = 0,981 N 
2. a. PሬԦ + TሬԦ = maሬԦ   donc TሬԦ = maሬԦ – PሬԦ 
b. Voir schéma ci-dessous. 
On mesure T4 = 1,1 N et T10 = 1,4 N. 
c. Oui, les vecteurs TሬԦ sont orientés vers les points 
d’attache, aux imprécisions de mesures et de tracés 
près : la mauvaise appréciation d’une longueur ou 
d’un parallélisme peut changer la direction donnée 
par le vecteur drastiquement. 

Bilan 
• Connaissant le mouvement du système étudié, il est 
possible de déterminer le vecteur accélération à partir 
des différentes positions sur la chronophotographie. Il 
faut pour cela déterminer les vitesses en différents 
points, puis tracer les variations des vecteurs vitesse. 
En utilisant la deuxième loi de Newton, on peut faire le 
lien entre le vecteur accélération, multiplié par la 
masse du système, et les vecteurs forces s’appliquant 
sur le système. 
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Exercices 
Exercices 1 à 23 corrigés à la fin du manuel de l’élève. 
 
Exercices 24 à 26 corrigés dans le manuel de l’élève. 
 
27 a. Le système {drone} est soumis à : 
- son poids PԦ, vertical et orienté vers le bas de norme 
P = mg ; 
- la force de poussée FԦ, verticale et orientée vers le 
haut de norme F = 0,80 N. 
On applique la deuxième loi de Newton au système 
{drone} dans le référentiel terrestre supposé galiléen : 

PԦ + FԦ = maԦ 
En projection sur l’axe (Oy), cela donne –P + F = may. 

On en déduit ay = 
F – P

m
 = 

F – mg
m

 = 
F
m

 – g 
Par intégration par rapport au temps, on obtient : 

vy(t) = ቀF
m

 – gቁt + A   où A est une constante. 

D’après les conditions initiales, vy(0) = 0 m·s–1 
donc A = 0 m·s–1. 

L’expression de vy est alors vy(t) = ቀF
m

 – gቁt. 
On intègre de nouveau par rapport au temps, et on 

obtient y(t) = 
1
2
ቀF

m
 – gቁt2 + B   où B est une constante. 

D’après les conditions initiales, y(0) = h. 
On en déduit B = h et donc l’expression de y devient : 

y(t) = 
1
2
ቀF

m
 – gቁt2 + h 

b. Soit ʏ la durée au bout de laquelle le drone touche 

le sol. On peut écrire : y(ʏ) = 
1
2
ቀF

m
 – gቁʏ2 + h = 0 

soit : 
1
2
ቀg – F

m
ቁʏ2 = h   puis ʏ2 = 

2h

g – F
m

 

On en conclut : ʏ = ඨ
2h

g – F
m

 = 5,6 s 

c. Sachant que vy(t) = ቀF
m

 – gቁt, la vitesse du drone à 
l’instant où le drone touche le sol est : 

vy(ʏ) = ቀF
m

 – gቁʏ = –14 m·s–1 
Le signe négatif signifie que la vitesse est orientée 
dans le sens opposé à l’axe (Oy). 
Sa norme vaut 14 m·s–1. 
 
28 a. La masse de l’air est négligeable devant la 
masse de l’eau. Le centre de masse est donc situé 
dans l’eau. 
b. La masse des voiles et du mât est négligeable 
devant la masse de la partie basse du bateau 
(coque, machinerie, équipage, etc.). Le centre de 
masse est donc situé dans la partie basse. 
c. La masse est principalement contenue dans les 
anneaux extérieurs plutôt que dans la barre centrale. 
Par symétrie, le centre de masse correspond au 
centre géométrique de l’haltère. 
 

 
Exercice 29 corrigé à la fin du manuel de l’élève. 
 
30 1. a. La norme de la force électrostatique qu’exerce le proton sur l’électron vaut : 

Fp/e,élec = 
1

4πɸ0

|qpqe|

d2  = 
1

4πɸ0

e2

d2 = 8,99 × 109 × 
(1,602 × 10–19)

2

(53 × 10–12)
2  = 8,2 × 10–8 N 

Cette force est dirigée selon l’axe passant par le proton et l’électron et est orientée de 
l’électron vers le proton. Cette force est attractive. 
b. La norme qu’exerce l’électron sur le proton est la même que celle calculée précédemment : 
Fe/p,élec = Fp/e,élec = 8,2 × 10–8 N Cette force est dirigée selon le même axe mais orientée du 
proton vers l’électron. Elle est attractive. 
c. 

 
2. a. La norme de la force gravitationnelle qu’exerce le proton sur l’électron vaut : 

Fp/e,grav = G
mpme

d2  = 6,67 × 10–11 × 
1,67 × 10–27 × 9,11 × 10–31

(53 × 10–12)
2  = 3,6 × 10–47 N 

Cette force est dirigée selon l’axe passant par le proton et l’électron et est orientée de 
l’électron vers le proton. Cette force est attractive. 
b. La norme qu’exerce l’électron sur le proton est la même que celle calculée précédemment : 
Fe/p,grav = Fp/e,grav = 3,6 × 10–47 N Cette force est dirigée selon le même axe mais orientée du 
proton vers l’électron. Elle est attractive. 
On ne peut pas représenter cette force sur le même schéma étant donné que la force 
gravitationnelle est de l’ordre de 10–47 N, tandis que la force électrique est de l’ordre de 10–7 N. 
On ne peut pas représenter avec la même échelle deux grandeurs dont l’une est 1040 fois l’autre. 
3. Un atome d’hydrogène est composé d’un proton et d’un électron. 
Sa masse vaut m = mp + me = mp = 1,67 × 10–27 kg, comme la masse de l’électron est négligeable 
devant la masse du proton. Le poids de l’atome d’hydrogène est donc : P = mg = 1,64 × 10–26 kg  
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31 1. Un référentiel galiléen est un référentiel dans 
lequel un système, qui n’est soumis à aucune force 
ou à des forces dont la somme est nulle, est au 
repos ou en mouvement rectiligne uniforme. 
2. a. Le référentiel ne peut pas être considéré 
comme galiliéen car le mouvement est accéléré. 
b. Le référentiel ne peut pas être considéré comme 
galiliéen car le mouvement est ralenti. 
c. Le référentiel peut être considéré comme galiliéen 
car le mouvement est rectiligne et uniforme. 
 

32 a. La table est immobile par rapport au référentiel 
terrestre qui est galiléen. La table peut donc, elle aussi, 
être considirée comme un référentiel galiléen. 
b. La trousse est soumise à son poids PԦ, dirigé 
selon l’axe vertical et orienté vers le bas, et la 
réaction normale de la table RሬԦ, dirigée selon 
l’axe vertical et orientée vers le haut. 
c. La trousse est immobile donc on peut 
appliquer la première loi de Newton. 
d. On en déduit : PሬԦ + RሬሬԦ = 0ሬሬԦ 
soit, en projection verticale : R – P = 0 
d’où P = R = mg = 0,300 × 9,81 = 2,94 N. 
 

33 a. La pierre de curling est soumise à son poids PԦ, 
dirigé selon l’axe vertical et orienté vers le bas, et la 
réaction normale du sol RሬԦ, dirigée selon l’axe vertical 
et orientée vers le haut. 
b. Les deux forces s’exerçant sur la pierre sont 
dirigées selon l’axe vertical. Comme la pierre ne 
s’élève pas ou ne s’enfonce pas dans le sol, on en 
déduit que la somme vectorielle de ces deux forces 
est nulle, d’après la première loi de Newton. On a 
donc PሬԦ + RሬሬԦ = 0ሬሬԦ   soit, en projection verticale R – P = 0 
d’où P = R = mg = 177 N. 
c. La somme vectorielle des forces est nulle. Comme 
la pierre a été lancée, elle possède une vitesse 
initiale non nulle, d’après le principe d’inertie, elle est 
donc animé d’un mouvement rectiligne et uniforme. 
 
Exercice 34 corrigé à la fin du manuel de l’élève. 
 
35 a. On se place dans le référentiel géocentrique 
supposé galiléen. Le satellite est animé d’un 
mouvement circulaire et uniforme. 
b. Le satellite n’est soumis qu’à une seule force, la 
force d’interaction gravitationnelle exercée par la 
Terre FሬԦT/S avec : 

FT/S = G
mTmS

(rT + h)2
 = 6,67 × 10–11 × 

5,97 × 1024 × 200 × 103

(6 378 × 103 + 250 × 103)
2 

FT/S = 1,81 × 106 N 
Cette force est dirigée selon l’axe Terre-satellite et 
orienté du satellite vers la Terre donc selon –uሬԦ. 
On peut écrire FሬԦT/S = –FT/S uԦ. 
c. D’après la deuxième loi de Newton appliquée au 
satellite, on peut écrire FሬԦT/S = maԦ, où aԦ est le vecteur 
accélération du centre de masse du satellite. 
La norme du vecteur accélération vaut alors : 

a = 
FT/S

m
 = 

1,81 × 106

200 × 103  = 9,06 m·s–2 

Le vecteur accélération est dirigée selon –uሬԦ. 

Exercice 36 corrigé à la fin du manuel de l’élève. 
 
37 Pour les systèmes suivants, le point qui 
représente le mieux le centre de masse est : 
1. Situation 1 : le point A qui est le centre 
géométrique du cube. 
2. Situation 2 : 
a. le point E qui est le centre géométrique du cerf-
volant ; 
b. le point C qui est le centre de masse du surfeur 
muni de sa planche ; 
c. le point D qui est le centre de masse de l’ensemble. 
3. Situation 3 : le point G qui est situé à proximité de 
la tête beaucoup plus lourde que le manche. 
 
Exercice 38 corrigé à la fin du manuel de l’élève. 
 
39 a. Le système est soumis : 
- à son poids PԦ, dirigé selon l’axe vertical et orienté 
vers le bas, de norme P = mg = 4,8 × 9,81 = 47 N ; 
- à la force de tension de la corde de gauche TሬԦg, 
dirigée selon l’axe de la corde de gauche formant un 
angle ɽ avec l’horizontale et orientée vers la gauche ; 
- à la force de tension de la corde de droite TሬԦd, 
dirigée selon l’axe de la corde de droite formant un 
angle ɽ avec l’horizontale et orientée vers la droite. 

 
b. Le système est immobile, donc d’après la première 
loi de Newton, on peut écrire TԦg + TԦd + PԦ = 0ሬԦ. 
On projette selon l’axe horizontal :  Tdcosɽ – Tgcosɽ = 0 
On peut en déduire que la force de tension de la corde 
est la même : Td = Tg = T 
On projette selon l’axe vertical : Tsinɽ + Tsinɽ – P = 0 

donc T = 
P

2sinɽ
 = 

mg
2sinɽ

 = 
4,8 × 9,81
2sin(8,0°)

 = 1,7 × 102 N. 

c. Quand ɽ tend vers 0, la force T tend vers l’infini. 
 
40 1. a. La voiture est soumise : 
- à son poids PሬԦ, dirigé selon l’axe vertical et orienté 
vers le bas, de norme P = mg = 1,23 × 104 N ; 
- à la réaction normale du sol NሬԦ, dirigée selon (Oy) et 
orientée vers le haut ; 
- à la force de frottement fԦ, dirigée selon (Ox) et 
orientée vers le haut de la pente. 

 
b. La voiture est immobile donc d’après la première 
loi de Newton, on peut écrire : PԦ + NሬԦ + fԦ = 0ሬԦ 
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On projette selon l’axe (Ox) : –f + Psinɲ = 0 
On en déduit : 
f = Psinɲ = mgsinɲ = 1 250 × 9,81 × sin(16,7°) 
f = 3,52 × 103 N 
On projette selon l’axe (Oy) : N – Pcosɲ = 0 
On en déduit : 
N = Pcosɲ = mgcosɲ = 1 250 × 9,81 × cos(16,7°) 
N = 1,17 × 104 N 
2. La voiture est désormais soumise : 
- à son poids PԦ, dirigé selon l’axe vertical et orienté 
vers le bas, de norme P = mg = 1,23 × 104 N ; 
- à la réaction normale du sol NሬԦ, dirigée selon (Oy) et 
orientée vers le haut ; 
- à la force de frottement fԦ, dirigée selon (Ox) et 
orientée vers le bas de la pente ; 
- à la force de tension du câble TԦ, dirigée selon l’axe 
du câble formant un angle ɽ avec l’axe (Ox) et 
orientée vers le haut de la pente. 

 
La voiture est animée d’un mouvement rectiligne et 
uniforme donc d’après la première loi de Newton, on 
peut écrire : PԦ + NሬԦ + fԦ  + TԦ = 0ሬԦ 
On projette selon l’axe (Ox) : f + Psinɲ – Tcosɽ = 0 
On en déduit : f = Tcosɽ – mgsinɲ 
f = 6,60 × 103 × cos(10,0°) – 1 250 × 9,81 × sin(16,7°) 
f = 2,98 × 103 N 
On projette selon l’axe (Oy) : N + Tsinɽ – Pcosɲ = 0 
On en déduit : N = mgcosɲ – Tsinɽ 
N = 1 250 × 9,81 × cos(16,7°) – 6,60 × 103 × sin(10,0°) 
N = 1,06 × 104 N 
 
41 a. Le lustre est soumis : 
- à son poids PԦ, dirigé selon l’axe 
vertical et orienté vers le bas, de 
norme P = mg = 3,5 × 9,81 = 34 N ; 
- à la force de tension du câble de 
gauche TሬԦg, dirigée selon l’axe du câble 
de gauche formant un angle ɲ avec la 
verticale et orientée vers le haut ; 
- à la force de tension du câble de 
droiteTሬԦd, dirigée selon l’axe du câble 
de droite formant un angle ɲ avec la 
verticale et orientée vers le haut. 
b. Le lustre est immobile donc, d’après la première 
loi de Newton, on peut écrire : TԦg + TԦd + PԦ = 0ሬԦ 
On projette selon l’axe (Ox) : Tgsinɲ – Tdsinɲ = 0 
On peut en déduire que la force de tension de la 
corde est la même : Td = Tg = T 
On projette selon l’axe (Oy) : Tcosɲ + Tcosɲ – P = 0 

donc T = 
P

2cosɲ
 = 

mg
2cosɲ

 = 
3,5 × 9,81

2 × cos(5,0°)
 = 17 N. 

42 a. Le ballon est soumis : 
- à son poids PԦ, dirigé selon l’axe vertical et orienté 
vers le bas, de norme : 
P = mg = 10 × 10–3 × 9,81 = 0,10 N ; 
- à la force de tension du fil TԦ, dirigée 
selon l’axe vertical et orientée vers le 
bas ; 
- à la somme des forces pressantes 
FሬԦA, dirigée selon l’axe vertical et 
orientée vers le haut, de norme 
FA = 0,4 N. 
b. Le ballon est immobile donc 
d’après la première loi de Newton, on 
peut écrire : PԦ + TԦ + FԦA = 0ሬԦ 
En projetant selon l’axe vertical, cette 
expression donne : –mg – T + FA = 0 
donc T = FA – mg 
T = 0,4 – 10 × 10–3 × 9,81 = 0,3 N 
c. Voir schéma ci-contre. 
 
43 1. a. Le parachutiste est soumis : 
- à son poids PԦ1, dirigé selon l’axe vertical et orienté 
vers le bas, de norme : 
P1 = m1g = 70,0 × 9,81 = 687 N ; 
- à la force de tension du parachute TԦ1, dirigée selon 
l’axe vertical et orientée vers le haut. 
b. Le parachutiste est animé d’un mouvement 
rectiligne et uniforme donc d’après la première loi de 
Newton, on peut écrire : PԦ1 + TԦ1 = 0ሬԦ 
En projetant selon l’axe vertical, cette expression 
donne –P1 + T1 = 0   donc T1 = P1 = 687 N. 
2. a. Le parachute est soumis : 
- à son poids PԦ2, dirigé selon l’axe vertical et orienté 
vers le bas, de norme : 
P2 = m2g = 15,0 × 9,81 = 147 N ; 
- à la force de tension du parachutisteTԦ2, dirigée 
selon l’axe vertical et orientée vers le bas ; 
- à la force de frottement avec l’air fԦ2, dirigée selon 
l’axe vertical et orientée vers le haut (opposée au 
mouvement). 
b. D’après la troisième loi de Newton, la force 
exercée par le parachute sur le parachutiste est 
opposée à la force exercée par le parachutiste sur le 
parachute et est de même norme : TԦ2 = –TԦ1 
Donc la force exercée par le parachutiste sur le 
parachute vaut T2 = T1 = 687 N. Cette force est 
orientée selon l’axe vertical et vers le bas. 
c. Le parachute est animé d’un mouvement rectiligne 
et uniforme donc d’après la première loi de Newton, 
on peut écrire : PԦ2+ TԦ2 + fԦ2 = 0ሬԦ 
En projetant selon l’axe vertical, cette expression 
donne : –P2 – T2 + f2 = 0 
donc f2 = P2 + T2 = 687 + 147 = 834 N. 
 
44 1. a. Le système est soumis : 
- à son poids PԦ1, dirigé selon l’axe vertical et orienté 
vers le bas, de norme : 
P1 = m1g = 65,0 × 9,81 = 638 N ; 
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- à la réaction normale de l’eau RሬԦ1, dirigée selon 
l’axe vertical et orientée vers le haut ; 
- à la force de frottement fԦ1, dirigée selon l’axe 
horizontal et orientée dans le sens opposé au 
mouvement, de norme f1 = 500 N ; 
- à la force de tension du câble TԦ1, dirigée selon l’axe 
du câble formant un angle ɲ avec l’axe horizontal et 
orientée dans le sens du mouvement. 

 
b. Le système est animé d’un mouvement rectiligne 
et uniforme donc d’après la première loi de Newton, 
on peut écrire : PԦ1 + RሬԦ1 + fԦ1 + TԦ1 = 0ሬԦ 
On projette selon l’axe (Ox) : –f1 + T1cosɲ = 0 

On en déduit : T1 = 
f1

cosɲ
 = 

500
cos(10,0°)

 = 508 N 

Ainsi, la force TԦ1 est dirigée selon l’axe du câble, 
orientée de Laurence vers le bateau et a pour norme 
T1 = 508 N. 
2. a. Le système est soumis : 
- à son poids PԦ2, dirigé selon l’axe vertical et orienté 
vers le bas, de norme : 
P2 = m2g = 700 × 9,81 = 6,87 × 103 N ; 
- à la réaction normale de l’eau RሬԦ2, dirigée selon 
l’axe vertical et orientée vers le haut ; 
- à la force de frottement fԦ2, dirigée selon l’axe 
horizontal et orientée dans le sens opposé au 
mouvement, de norme f2 = 2,50 × 103 N ; 
- à la force de tension du câble TԦ2, dirigée selon l’axe 
du câble formant un angle ɲ avec l’axe horizontal et 
orientée dans le sens opposé au mouvement ; 
- à la force de poussée du bateau FԦ2, dirigée selon 
l’axe horizontal et orientée dans le sens du 
mouvement. 

 

b. D’après la 3e loi de newton, la force qu’exerce 
Laurence sur le câble est opposée à la force 
qu’exerce le câble sur Laurence mais de même 
norme : TԦ2 = –TԦ1 
Ainsi, la force TԦ2 est dirigée selon l’axe du câble, 
orientée du bateau vers Laurence et a pour norme 
T2 = T1 = 508 N. 
c. Le système {bateau} est animé d’un mouvement 
rectiligne et uniforme donc d’après la première loi de 
Newton, on peut écrire : PԦ2 + RሬԦ2 + fԦ2 + TԦ2 + FԦ2= 0ሬԦ 
On projette selon l’axe (Ox) : –f2 – T2cosɲ + F2 = 0 
On en déduit : F2 = f2 + T2cosɲ 
F2 = 2,50 × 103 + 508 × cos(10,0°) = 3,00 × 103 N 
Ainsi, la force FԦ2 est dirigée selon l’axe horizontal, 
orientée dans le sens du mouvement et a pour 
norme F2 = 3,00 × 103 N. 
 
45 1. a. Le poids de la bille d’acier vaut : 
P = mg = 1,1 × 10–1 × 9,81 = 1,1 N 
b. Au moment où on lâche la bille, elle est soumise : 
- à son poids PԦ, dirigé selon l’axe vertical et orienté 
vers le bas, de norme P = 1,1 N ; 
- à la somme des forces pressantes FԦA, dirigée selon 
l’axe vertical et orientée vers le haut, de norme 
FA = 0,14 N ; 
- à cet instant, il n’y a pas de forces de frottement. 
Voir schéma en page suivante. 
c. D’après la deuxième loi de Newton, on peut écrire, 
après avoir lâché la bille : PሬԦ + FሬԦA = maሬԦ 
On projette selon l’axe (Oy) : –P + FA = ma 

d’où a = 
–P + FA

m
 = 

–1,1 + 0,14

1,1 × 10–1  = –8,5 m·s–2. 

L’accélération est non nulle et négative. Elle est 
donc dirigée vers le bas et la bille coule. 
2. a. Le poids de la bille de liège vaut : 
P’ = m’g = 2,8 × 10–3 × 9,81 = 2,7 × 10–2 N 
b. Après avoir lâché la bille, elle est soumise : 
- à son poids PԦ, dirigé selon l’axe vertical et orienté 
vers le bas, de norme P = 2,7 ×10–2 N ; 
- à la somme des forces pressantes FሬԦA, dirigée selon 
l’axe vertical et orientée vers le haut, de norme 
FA = 0,14 N ; 
- à cet instant, il n’y a pas de forces de frottement. 
Voir schéma en page suivante. 
c. D’après la deuxième loi de Newton, on peut écrire, 
au moment où on lâche la bille : PԦ + FԦA = maԦ 
On projette selon l’axe (Oy) : –P + FA = ma 

d’où a = 
–P + FA

m
 = 

–0,027 + 0,14

2,8 × 10–3  = 40 m·s–2. 

L’accélération est non nulle et positive. Elle est donc 
dirigée vers le haut et la bille remonte. 
3. Pour que la bille reste immobile, il faudrait une 
accélération nulle. 
D’après la première loi de Newton : 

PԦ + FԦA = 0ሬԦ   soit –P + FA = 0 
donc P = mg = FA = 0,14 N. 

On en déduit : m = 
FA

g
 = 

0,14
9,81

 = 1,4 × 10–2 kg = 14 g. 
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1. b. 

 

2. b. 

 

 
 
 
 
46 D’après la deuxième loi de Newton : ɇFሬԦ = maሬԦ 

a. maሬԦ = FሬԦ1 + FሬԦ2   soit ቐ
ax = F1x + F2x

m
 = 2 – 1

1
 = 1 m·s–2

ay = F1y + F2y

m
 = 0 m·s–2

 

b. maԦ = FԦ1 + FԦ2  soit ቐ
ax = F1x + F2x + F3x

m
 = –1

1
 = –1 m·s–2

ay = F1y + F2y + F3y

m
 = 1,5 – 0,5

1
 = 1 m·s–2

 

c. maԦ = FԦ1 + FԦ2  soit ቐ
ax = F1x + F2x

m
 = –1 – 1

1
 = –2 m·s–2

ay = F1y + F2y

m
 = 0,5 – 1,5

1
 = –1 m·s–2

 

 
Exercice 47 corrigé à la fin du manuel de l’élève. 
 
48 a. Par définition, une accélération est une 
variation de vitesse en une durée donnée. 

Ici, a = 
vf – v0

∆t
 = 

–v0

∆t
 = 

–9,0
3,0

 = –3,0 m·s–2. 

Le vecteur accélération est dirigé selon l’axe de la 
pente, orienté vers le haut de la pente, dans le sens 
opposé à (Ox) et a pour norme 3,0 m·s–2. 
On a donc ax = –3,0 m·s–2   et   ay = 0 m·s–2. 

b. Le skieur est soumis : 
- à son poids PሬԦ, dirigé selon l’axe vertical et orienté 
vers le bas, de norme P = mg = 785 N ; 
- à la réaction normale du sol NሬሬԦ, dirigée selon (Oy) et 
orientée vers le haut ; 
- à la force de frottement fԦ, dirigée selon (Ox) et 
orientée vers le haut de la pente, dans le sens 
opposé au mouvement. 

 
On utilise la deuxième loi de Newton dans le 
référentiel terrestre supposé galiléen, sur le système 
{skieur} : PԦ + fԦ + NሬԦ = maԦ 
On projette selon l’axe (Ox) : –f + Psinɲ = max 
On en déduit : 
f = mgsinɲ – m ax = 80 × 9,81 × sin(15°) + 80 × 3,0 
f = 4,4 × 102 N 
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49 a. La voiture est soumise : 
- à son poids PԦ, force verticale dirigée 
vers le bas de norme P = mg ; 
- à la réaction normale du sol NሬԦ, force 
verticale dirigée vers le haut ; 
- à la force de frottement des roues avec 
le sol FሬԦ, force horizontale dirigée dans le 
sens du mouvement. 
b. La deuxième loi de Newton s’écrit : 
 PሬԦ + NሬሬԦ + FሬԦ = maሬԦ 
Selon l’axe vertical, on peut écrire –P + N = 0 
puisqu’il n’y a pas d’accélération verticale. Les 
forces PԦ et NሬԦ se compensent. 
On projette selon l’axe horizontal : F = ma 
donc F = 950 × 3,2 = 3,04 × 103 N. Cette force est 
horizontale et dirigée dans le sens du mouvement. 

c. ax = 
dvx
dt

   donc par intégration : 

vx = 
F
m

t + A   où A est une constante. 

D’après les conditions initiales, vx(t = 0) = A = 0 

donc vx(t) = 
F
m

t. 
Au bout de t1 = 5 s, la vitesse vaut : 

vx(t1) = 
F
m

t1 = 
3,04 × 103

950
 × 5,0 = 16 m·s–1 

d. De même, vx = 
dx
dt

   donc par intégration : 

x = 
F

2m
t2 + B   où B est une constante. 

D’après les conditions initiales, x(t = 0) = B = 0 

donc x(t) = 
F

2m
t2. 

Au bout de t1 = 5 s, la distance parcourue vaut : 

x(t1) = 
F

2m
 t1

2 = 
3,04 × 103

2 × 950
 × 5,02 = 40 m 

 
50 a. Le système est soumis :  
- à son poids PԦ, dirigé selon l’axe vertical et orienté 
vers le bas, de norme : 
P = mg = 120 × 9,81 = 1,18 × 103 N ; 
- à la force de poussée FԦ, dirigée selon l’axe vertical 
et orientée vers le haut. 
On applique la deuxième loi de Newton : PԦ + FԦ = maԦ 
Pour que le système décolle, il faut que l’accélération 
soit positive le long de l’axe vertical ascendant. Il faut 
donc ay > 0 ce qui implique Py + Fy > 0. En projection 
le long de l’axe vertical, cette expression donne F > P 
soit F > 1,18 × 103 N. La norme de la force de 
poussée doit donc être supérieure à 1,18 × 103 N. 
b. D’après la deuxième loi de Newton, on peut écrire 
PԦ + FԦ = maԦ. On projette cette équation le long de 
l’axe vertical : –P + F = ma 
On en déduit : 

a = 
F – P

m
 = 

1,66 × 103 – 1,18 × 103

120
 = 4,00 m·s–2 

c. ay = 
dvy

dt
 = a   donc par intégration : 

vy(t) = at + A   où A est une constante. 
D’après les conditions initiales, vy(t = 0) = A = 0 
donc vy(t) = at. 

De même, vy = 
dy
dt

   donc par intégration : 

y(t) = 
a
2
t2 + B   où B est une constante. 

D’après les conditions initiales, y(t = 0) = B = 0 

donc y(t) = 
a
2
t2. 

d. L’ascension est terminée au bout d’un temps 
t1 = 3,0 s. À cet instant, l’altitude atteinte vaut 

y1(t1) = 
a
2
 t1

2 = 
4,00

2
 × 3,02 = 18 m et la vitesse vaut 

vy(t1) = v1 = at1 = 12 m·s–1. 
 
51 a. Le système est soumis : 
- à son poids PԦ, force 
verticale dirigée vers le 
bas de norme P = mg ; 
- à la réaction normale de 
la route NሬԦ, force verticale 
dirigée vers le haut ; 
- à la force de frottement 
FԦ, force horizontale 
dirigée dans le sens opposé au mouvement. 
On néglige les frottements avec l’air. 
b. La deuxième loi de Newton s’écrit : 
 PԦ + NሬԦ + FԦ = maԦ 
Selon l’axe (Oy), on peut écrire –P + N = 0 puisqu’il 
n’y a pas d’accélération verticale. Les forces PԦ et NሬԦ 
se compensent. On projette selon l’axe (Ox) : 

–F = max   soit ax = 
–F
m

. 

ax = 
dvx
dt

   et   vx = 
dx
dt

  donc par intégration : 

vx = 
–F
m

t + A   et   x = 
–F
2m

t2 + At + B 
où A et B sont des constantes. 
D’après les conditions initiales : 
vx(t = 0) = A = v0   et   x(t = 0) = B = 0 
Les équations horaires de la vitesse et de la position 

sont donc : vx = 
–F
m

t + v0   et   x(t) = 
–F
2m

t2 + v0t 

c. Le vélo est à l’arrêt après une durée ʏ au bout de 

laquelle la vitesse est nulle, soit vx(ʏ) = 
–F
m
ʏ + v0 = 0 

et donc ʏ = 
mv0

F
. 

d. On remplace dans l’équation de x, on obtient : 

x(ʏ) = d = 
–F
2m
ቀmv0

F
ቁ

2
 + v0 × 

mv0

F
 = 

mv0
2

2F
. 

On peut donc en déduire l’expression F = 
mv0

2

2d
. 

En utilisant les valeurs données dans l’énoncé, la 
norme de la force de frottement vaut alors : 

F = 
mv0

2

2d
 = 

1,0 × 102 × 102

2 × 5,0
 = 1,0 × 103 N 

 
52 a. Le système est soumis : 
- à son poids PԦ, force verticale dirigée vers le bas de 
norme P = mg ; 
- à la réaction normale du support NሬԦ, force verticale 
dirigée vers le haut ; 
- à la force de frottement fԦ, force horizontale dirigée 
dans le sens opposé au mouvement (selon –(Ox), ici). 
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b. La deuxième loi de Newton s’écrit PԦ + NሬԦ + fԦ = maԦ. 
Selon l’axe (Oy), on peut écrire –P + N = 0 puisqu’il 
n’y a pas d’accélération verticale. Les forces PԦ et NሬԦ 
se compensent. 

On projette selon l’axe (Ox) : –f = max   soit ax = 
–f
m

. 

ax = 
dvx
dt

   et   vx = 
dx
dt

   donc par intégration : 

vx = 
–f
m

t + A   et   x = 
–F
2m

t2 + At + B 
où A et B sont des constantes. 
D’après les conditions initiales : 
vx(t = 0) = A = v0   et   x(t = 0) = B = 0 
Les équations horaires de la vitesse et de la position 

sont donc : vx = 
–f
m

t + v0   et   x(t) = 
–F
2m

t2 + v0t 

c. Par comparaison, on en déduit 
–F
2m

 = –0,6 m·s–2 
d’où f = 0,6 × 2 × m = 0,25 N   et   v0 = 5,0 m·s–1. 
d. D’après le graphique, la boule touche la paroi au 
bout d’un temps t1 = 0,4 s. 
À cet instant, la vitesse de la boule vaut : 

v1 = vx(t1) = 
–f
m

t1 + v0 = 
–0,25
0,209

 × 0,4 + 5,0 = 4,5 m·s–1 

e. Graphiquement, on retrouve les valeurs de v0 et v1 
grâce à leur tangente : 

v0 = 
xB – xA

tB – tA
 = 

0,96
0,18

 = 5,3 m·s–1 

et v1 = 
xD – xC

tD – tC
 = 

1,90 – 1,52
0,40 – 0,31

 = 4,2 m·s–1 

On retrouve les résultats attendus aux incertitudes 
de mesure près. 

 
 

 
 
 
53 a. La bille A subit : 
- son poids PሬԦ = mgሬԦ ; 
- la tension du fil TሬԦ ;  
- la force électrique 

FሬԦ = – 
1

4πɸ0

q2

AB2 iԦ 

avec AB = 2lsinɽ. 
b. D’après la première loi de 
Newton, comme le système 
est au repos dans le 
référentiel terrestre supposé 
galiléen, PሬԦ + TሬԦ + FሬԦ = 0ሬሬԦ. 

En projection sur iԦ, cela donne : 

– 
1

4πɸ0

q2

4l2 sin2 ɽ
 + Tsinɽ = 0   d’où T = 

1
4πɸ0

q2

4l2 sin3 ɽ
. 

En projection sur jԦ, on a : 

–mg + Tcosɽ = 0, d’où T = 
mg

cos ɽ
. 

Cela donne : 
1

4πɸ0

q2

4l2 sin3 ɽ
 = 

mg
cosɽ

 

d’où q = ±ඨ
4mgl2 sin3 ɽ

1
4πɸ0

cos ɽ
. 

c. On calcule |q| = 4,3 × 10–8 C. 
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54 

 
a. • Calcul de la variation du vecteur vitesse : c’est 
la deuxième loi de Newton qui est utilisée, dans sa 

version discrète ΔvԦ = 
Δt
m

 FሬԦ, où FԦ est la somme des 
forces subies. 
• Calcul du vecteur vitesse à la date t + Δt : on 
utilise ΔvԦ(t) = vԦ(t + Δt) – vԦ(t). 
• Calcul de la position à la date t + Δt : on utilise 

vԦ(t) = 
OMሬሬሬሬሬሬԦ(t + Δt) – OMሬሬሬሬሬሬԦ(t)

Δt
. 

b. while y[p] >= 0 :   assure que la boucle tourne 
tant que le projectile est au-dessus du sol. 
c. On ajoute portee=max(x). 
 
55 On étudie le skieur 
modélisé par son centre 
de masse G dans le 
référentiel terrestre 
supposé galiléen. Il subit 
son poids PԦ, la réaction 
normale de la piste NሬԦ et 
les frottements de la 
piste fԦ. 
En notant aሬԦ l’accélération du système dans le 
référentiel d’étude, la deuxième loi de Newton s’écrit 
maԦ  = PԦ + NሬԦ + fԦ. En projection sur l’axe (Ox), cela 
donne max = –f + mgsinɽ. 
Si le skieur démarre immobile, alors on peut écrire 
l’équation horaire de sa vitesse sur l’axe parallèle à 

la pente, vx = ቀg sin ɽ  – f
m
ቁt, puis sa position sur cet 

axe en prenant comme origine la position de 

démarrage, x = 
1
2
 ቀg sin ɽ  –  f

m
ቁt2. 

La longueur L est parcourue au bout de la durée tf 

telle que L = 
1
2
 ቀg sin ɽ  – f

m
ቁ tf2, d’où tf = ඨ

2L

g sinɽ – f
m

. 

La vitesse à cette date-là est vf = ቀg sin ɽ  – f
m
ቁtf, soit 

vf = ට2L ቀg sin ɽ  – f
m
ቁ. 

La norme de la force de frottements de la piste est 

donc f = mgsinɽ – 
vf
2

2L
 = 4,9 × 102 N. 

56 1. On étudie le sapin modélisé par un point dans 
le référentiel terrestre supposé galiléen. Il subit son 
poids PԦ = mgԦ et la tension du fil TԦ. D’après la 
deuxième loi de Newton, maԦ  = PԦ + TԦ, où aԦ est 
l’accélération du sapin dans le référentiel terrestre. 
En projection sur un axe vertical ascendant, cela 

donne 0 = –mg + Tcosɽ = 0, d’où T = 
mg

cos ɽ
. 

a. L’accélération a pour norme, dans ce 

cas, a = 
100

3,6 × 12
 = 2,3 m·s–2. 

En projection sur un axe horizontal dans 
le sens de la marche, la deuxième loi de 
Newton donne : 
max = Tsinɽ   avec ax = a. 

On obtient donc ma = 
mg

cos ɽ
sinɽ 

d’où tanɽ = 
a
g
   puis ɽ = 13°. 

b. En projection sur un axe horizontal 
dans le sens de la marche, la deuxième 
loi de Newton donne : 
max = –Tsinɽ   avec ax = –a. 
On peut obtenir vx = –at + v0 
avec v0 = 100 km·h–1 = 27,8 m·s–1. 

Puis x = – 
1
2
at2 + v0t, distance parcourue 

pendant le freinage. 
L’arrêt a lieu à la date tf telle que vx(tf) = 0 
d’où tf = 

v0

a
. La distance d’arrêt est donc : 

L = x(tf) = – 
1
2
atf

2 + v0tf = 
v0

2

2a
. 

Comme L = 100 m, on en déduit a = 
v0
2

2L
 = 3,9 m·s–2. 

On obtient, comme précédemment, –ma = – 
mg

cos ɽ
sinɽ 

d’où tanɽ = 
a
g
   puis ɽ = 21°. 

2. L’accélération est alors centripète, de norme a = 
v2

R
 

avec v = 70 km·h–1 = 19 m·s–1. 
Le même raisonnement que précédemment en 
projetant la deuxième loi de Newton sur le vecteur 
normal du repère de Frenet donne de même tanɽ = 

a
g
 

puis ɽ = 21°. 
 
57 1. On étudie la personne dans le référentiel 
terrestre supposé galiléen. Elle subit son poids 
PԦ = mgԦ et la réaction normale du support NሬԦ. La 
personne étant immobile dans un référentiel galiléen, 
PԦ + NሬԦ = 0ሬԦ, d’où NሬԦ = –PԦ. D’après la troisième loi de 
Newton, la force exercée par la personne sur le pèse-
personne est –NሬԦ = PԦ. La norme de cette force est 
donc mg, ce qui fait que le pèse-personne affiche 
bien la masse m de la personne. 
2. a. Cette fois-ci, on applique la deuxième loi de 
Newton : PԦ + NሬԦ = maԦ   d’où NሬԦ = maሬԦ1 – PԦ. 
Le pèse-personne subit donc la force –NሬԦ = –maሬԦ1 + PԦ, 
de norme m(g + a1). 

La masse affichée est donc 
m(g + a1)

g
 = 1,0 × 102 kg. 
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b. Quand l’ascenseur est 
en mouvement rectiligne 
et uniforme, tout se passe 
comme s’il était à l’arrêt, 
donc le pèse-personne 
affiche bien m. 
c. Lorsque l’ascenseur 
freine en arrivant en haut, 
avec une accélération 
aԦ2 = –aԦ1, on procède de la 
même façon qu’à la 
question 2a : le pèse-
personne subit la force –NሬԦ = –maԦ2 + PԦ, de norme 
m(g – a2). 

La masse affichée est donc 
m(g – a2)

g
 = 85 kg. 

d. Lorsque le câble est rompu, si l’accélération est 
aԦ3 = gԦ, alors PԦ + NሬԦ = maԦ3 = mgԦ donne NሬԦ = 0ሬሬԦ : la 
balance affiche 0 kg. 
 
58 a. L’accélération du 

système est : aԦ = 
v2

R
 uሬԦn 

où R est le rayon de la 
trajectoire et v la norme de 
la vitesse de la moto. 
b. Le système subit son 
poids PሬԦ = mgሬԦ et la réaction 
normale du support NሬԦ. 
La deuxième loi de Newton 
dans le référentiel terrestre s’écrit maሬԦ = PሬԦ + NሬሬԦ, d’où 
NሬሬԦ = maሬԦ – P ሬሬሬԦ= m(aሬԦ – gሬԦ). En projection sur uሬԦn, cela 

donne : N = m(a – g) = mቀv2

R
 –  gቁ 

Le contact existe tant que N > 0, c’est-à-dire tant que 
v2

R
 > g. La vitesse minimale à laquelle doit rouler le 

motard est donc vmin = ඥRg. 
c. Le rayon de la trajectoire semble voisin de R = 2 m. 
On calcule donc vmin = 4 m·s–1, voisine de 16 km·h–1. 
 
59 1. a. On étudie la bille ramenée à son 
centre de masse G dans le référentiel terrestre 
supposé galiléen. Elle subit son poids PԦ = mgԦ 
et la force de frottement fԦ. 
La deuxième loi de Newton s’écrit donc : 

m
dvԦ
dt

 = PԦ + fԦ   soit 
dvԦ
dt

 = gԦ – 
k
m

 vԦ. 

On peut écrire aussi ceci : 
dvԦ
dt

 = – 
k
m
ቀvԦ – m

k
gԦቁ, 

qui est bien de la forme proposée avec ʏ = 
m
k
   

et   vԦl = 
m
k
 gԦ. 

ʏ est en secondes puisque 
1
ʏ
 vԦ est homogène à une 

accélération. Et vl est en mètres par seconde 
puisque c’est homogène à une vitesse. 
b. D’après les expressions du cours, on en déduit 
vԦ = vԦl + AԦe–t/ʏ. 

À t = 0 s, vԦ = 0ሬԦ, d’où AሬԦ = –vԦl   puis vԦ = vԦl(1 – e–t/ʏ). 

2. a. On détermine graphiquement ʏ comme 
l’abscisse de l’intersection de la tangente à l’origine 
avec l’asymptote horizontale : ʏ = 0,09 s 
On détermine vl comme l’ordonnée de l’asymptote 
horizontale : vl = 0,9 m·s–1 

b. On en déduit k = 
m
ʏ
 = 2 × 10–2 kg·s–1. 

 

60 1. La goutte subit son poids PԦ = mgԦ = 
4
3
πρhr3gԦ, la 

force de frottement fԦ = –6πɻrvԦ et la force électrique 
FሬԦ = qEሬԦ. 
2. Si la goutte est en mouvement rectiligne et uniforme 
dans le référentiel du laboratoire supposé galiléen, 

alors : PԦ + fԦ + FԦ = 0ሬԦ   d’où 
4
3
πρhr3gԦ – 6πɻrvԦ + qEሬԦ = 0ሬሬԦ. 

En projection sur l’axe (Oz), cela donne : 
4
3
πρhr3g – 6πɻrvz + qEz = 0 

d’où vz = 
1

6πɻr
ቀ4

3
πr3ρhg + qEzቁ  

3. a. Si le champ électrostatique est nul, alors la 

vitesse s’écrit v0 = 
1

6πɻr
ቀ4

3
πr3ρhgቁ, d’où l’on déduit : 

r = ට
9ɻv0

2ρhg
 

b. La goutte est immobile si la 
force électrostatique est vers 
le haut. Comme elle est 
chargée négativement, cela 
impose que EԦ soit orienté vers 
le bas. La borne A doit donc 
être la borne positive du 
générateur. 
La relation de la question 2 
avec vz = 0 donne : 

4
3
πr3ρhg + qE0   d’où q = – 

4
3
πr3ρhg

E0
. 

4. Posons, pour fixer les idées, EሬԦ1 = E1kԦ, vertical vers 
le bas. La relation de la question 2 donne : 

v1z = 
1

6πɻr
ቀ4

3
πr3ρhg + qE1ቁ et v2z = 

1
6πɻr

ቀ4
3
πr3ρhg – qE1ቁ 

En additionnant ces deux relations, il vient : 

v1z + v2z = 
2

6πɻr
ቀ4

3
πr3ρhgቁ   d’où r = ට

9ɻ(v1z + v2z)
4ρhg

. 

En soustrayant la deuxième relation à la première, il 

vient : v1z – v2z = 
1

6πɻr
(2qE1) 

On en déduit : q = 
3πɻr(v1z – v2z)

E1
 

 
Exercice 61 corrigé à l’adresse hatier-clic.fr/pct338 
 
62 1.1. D’après la deuxième loi de Newton, la somme 
vectorielle des forces subies par un système est 
égale au produit de sa masse par son accélération 
dans un référentiel galiléen. Appliquée à la balle dans 
le référentiel terrestre, ne subissant que la force FԦ 
dans son trajet entre A et B, cela s’écrit maԦ = FԦ, où aሬԦ 
est l’accélération de la balle. 

https://www.hatier-clic.fr/pct338
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1.2. Entre A et B, l’accélération de la balle est un 
vecteur constant et sa trajectoire une ligne droite, 
donc la balle est en mouvement rectiligne et 
uniformément accéléré. 
2.1. En notant vԦ le vecteur vitesse de la balle, on 

peut écrire aԦ = 
dvԦ
dt

. 

2.2. L’accélération étant constante, elle est égale à 
l’accélération moyenne entre A et B, de norme : 

a = 
vB

Δt
 = 

14
0,11

 = 1,3 × 102 m·s–2 

3. On en déduit F = ma = 20 N. 
Le poids de la balle ayant pour norme P = mg = 1,6 N, 
il est inférieur en norme au dixième de F, ce qui peut 
justifier qu’on le néglige. 
 
63 On étudie le solide de masse m dans le 
référentiel terrestre supposé galiléen. Il subit son 
poids PԦ = mgԦ et la force de rappel du ressort FԦ de 
norme F = kl0. Le système étant à l’équilibre, on 
applique la première loi de Newton : FሬԦ + PሬԦ = 0ሬሬԦ 
d’où l’on déduit, en projection verticale : 

kl0 – mg = 0   puis l0 = 
mg
k

. 

Le tracé de l0 en fonction de m donne donc une droite 

qui passe par l’origine, de coefficient directeur 
g
k
. 

Sur le graphique, on détermine ce coefficient directeur : 

a = 
g
k
 = 

20,5 × 10–2

100 × 10–3  = 2,05 m·kg–1 

On en déduit k = 
g
a
 = 

9,8
2,05

 = 4,8 N·kg–1. 

64 1. Le débit massique total est : 
D = 270 + 2 × 1,8 × 103 = 3,87 × 103 kg·s–1 
Pendant Δt = 2,4 s, la masse éjectée est donc : 
méj = DΔt = 9,3 × 103 kg   soit 9,3 tonnes. 
La masse au décollage étant m = 750 à 780 tonnes, 
cette masse éjectée est donc négligeable devant la 
masse initiale de la fusée. On peut donc considérer 
que la masse totale de la fusée est constante 
pendant la durée de l’étude. 
2. On mesure sur la photo y1 = 2,0 cm, puis 
y5 = 2,7 cm. Comme y1 = 30,1 m en réalité, on en 

déduit y5 = 30,1 × 
2,7
2,0

 = 41 m. 

3.1. On peut écrire v2 = 
33,3 – 30,1
1,00 – 0,20

 = 4,00 m·s–1. 

C’est bien ce qu’on lit sur le graphique à 0,6 s. 
3.2. On modélise les points du graphique par une 
droite. L’accélération de la fusée est le coefficient 

directeur de la droite et vaut 
15
2,2

 = 6,8 m·s–2, voisin 

de 7 m·s–2. 
3.3. Le vecteur accélération est vertical 
car le mouvement est vertical, et orienté 
vers le haut car la vitesse verticale croît 
au cours du temps. 
4. Voir schéma ci-contre. 
5. La fusée subit son poids PԦ, vertical et 
vers le bas, de norme P = mg, et la force 
de poussée FԦ, verticale et vers le haut. 
La deuxième loi de Newton s’écrit : 
maԦ = PԦ + FԦ   d’où l’on déduit FԦ = maԦ – PԦ, 
de norme F = ma + mg = 1,3 × 107 N. 
C’est bien cohérent avec les 13 000 kN 
de poussée annoncés. 
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12. Mouvement dans un champ uniforme 
Activités p. 346 à 349 

ᬅ Étude dynamique d’un mouvement plan 
Voici des exemples de courbes obtenues : 

 
 
Dans cet exemple la modélisation linéaire de la courbe x(t) donne : x(t) = 2,213t 
La modélisation parabolique de la courbe y(t) donne : y(t) = –5,098t2 + 4,155t + 9,874 × 10–3 
 
1. On choisit le modèle linéaire car à l’instant initial, 
l’origine a été placée au niveau de la position de la 
balle. Les coordonnées de la balle sont donc nulles à 
cet instant. 
2. En utilisant le tableur, on détermine les 
coordonnées du premier point (indice 0) et du 

deuxième point (indice 1) : v0x = 
x1 – x0

∆t
 = 2,244 m·s–1 

et v0y = 
y1 – y0
∆t

 = 4,225 m·s–1 dans notre exemple. 
3. Les coordonnées théoriques du mouvement sont : 

൝
x(t) = v0xt

y(t) = –
1
2

gt2 + v0yt
 

Les coordonnées numériques théoriques du 
mouvement (sur cet exemple) sont : 

൜ x(t) = 2,244t
y(t) = –4,91t2 + 4,225t 

Les coordonnées numériques des modèles 
numériques (sur cet exemple) obtenues 
précédemment sont : 

൜
x(t) = 2,213t

y(t) = –5,098t2 + 4,155t + 9,874 × 10–3 

Les valeurs sont très proches : 
2,244 ≈ 2,213 –4,91 ≈ –5,098 
4,225 ≈ 4,155 0 ≈ 9,874 × 10–3 

La deuxième loi de Newton permet donc de retrouver 
les coordonnées du mouvement. 

Bilan 
• Si on compare les solutions obtenues avec la 
deuxième loi de Newton avec les modèles 
numériques obtenus grâce au logiciel de pointage, on 
s’aperçoit que les équations horaires sont très 
proches. On en déduit que la deuxième loi de Newton 
permet de prévoir convenablement le mouvement du 
ballon. 
• On peut entrevoir deux sources d’erreurs entre 
théorie et expérience. 
La première est d’ordre expérimental. Le pointage 
est une chose délicate à réaliser sans erreur de 
pointage. Pour se rendre compte de cette erreur, il 
suffit de regarder les équations horaires obtenues 
par les autres groupes. Avec le même 
enregistrement, sans erreur de pointage, chaque 
binôme devrait trouver les mêmes résultats. 
La deuxième est liée au modèle choisi et, plus 
exactement, à l’absence de frottement de toute 
nature. Même si le ballon se déplace doucement, 
l’air agit sur le ballon et le freine
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ᬆ Étude énergétique d’un mouvement plan 
Le pointage de la vidéo donne des tableaux de 
mesures. Dans le tableur, on crée les variables vx et 
vy, puis la norme v. On calcule vx en faisant le calcul 

vx(t) = 
vx(t + ∆t) – vx(t + ∆t)

2∆t
. En langage Latis-Pro, cela 

donne, dans l’exemple utilisé : 

 
On fait de même pour vy. Pour la norme de la vitesse v, 

on calcule v = ටvx
2 + vy

2. 

En langage Latis-Pro, cela donne, dans notre exemple : 

 
On créer les variables Epp ; Ec puis Em. 
Pour Epp, la variable y représente l’altitude de la balle et 
la masse de la balle utilisée dans notre exemple est 
m = 0,280 kg. On calcule avec le tableur Epp = mgy. 
Pour Ec, la masse de la balle utilisée dans notre 
exemple est m = 0,280 kg. On calcule avec le 

tableur Ec = 
1
2
mv2 en utilisant la norme de la vitesse 

calculée précédemment. 
Pour Em, on calcule Em = Ec + Epp. On obtient, dans 
notre exemple, les courbes suivantes. 

 

 
 
1. a. L’origine de l’énergie potentielle de pesanteur 
est implicitement choisie à l’endroit correspondant à 
l’altitude nulle. Ici, l’origine a été choisie à la 
position initiale du ballon. On en déduit que la 
position initiale est la position choisie comme origine 
de l’énergie potentielle de pesanteur. 
b. À l’instant initial, comme l’énergie potentielle de 
pesanteur est nulle, l’énergie de la balle se trouve 
uniquement sous la forme d’une énergie cinétique. 
Sur le graphique, ce n’est pas le cas, car il nous a 
été impossible de calculer la vitesse à l’instant 
initial, et ainsi nous n’avons pas les énergies à cet 
instant. 
2. a. Compte tenu de la précision dans le pointage, 
on s’aperçoit qu’en dehors de la fin du mouvement, 

l’énergie mécanique semble constante. Cette chute 
soudaine d’énergie est sans doute à chercher dans le 
fait qu’à ce moment, la vitesse de la balle devient 
suffisamment grande pour que les effets des 
frottements de l’air commencent à se faire sentir. La 
courbe de l’énergie potentielle semble continuer 
comme attendu, mais la courbe de l’énergie cinétique 
semble stagner. Toute l’énergie potentielle n’est plus 
entièrement convertie en énergie cinétique. Une partie 
de cette énergie disparaît sous forme de chaleur. 
b. D’un point de vu énergétique, au cours du 
mouvement de la balle, l’énergie cinétique de la balle 
s’est transformée en énergie potentielle pendant la 
montée, puis la transformation s’est inversée au 
cours de la descente. 
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3. a. On peut repérer le sommet de la trajectoire à 
l’aide des courbes énergétiques en se rappelant 
l’expression de l’énergie potentielle de pesanteur : 
Epp = mgy. L’altitude du ballon devient maximale 
lorsque l’énergie potentielle de pesanteur devient 
maximale aussi. 
On utilise alors le réticule de la fenêtre graphique 
pour obtenir l’instant correspondant au maximum de 
l’énergie potentielle de pesanteur. Dans 
l’enregistrement utilisé, cela correspondait à la 
position telle que t = 400 ms. 
b. Au sommet de la trajectoire, l’énergie cinétique 
n’est pas nulle car la balle n’est pas immobile, mais 
a toujours une vitesse horizontale. Sa vitesse n’est 
donc pas nulle, son énergie cinétique non plus. 
On obtient l’énergie cinétique de la balle à cet instant, 
en utilisant le réticule de la fenêtre graphique. 
Dans notre exemple, l’énergie cinétique minimale 

était Ecmin = 697 mJ. Comme Ecmin = 
1
2
mvmin

2, où vmin 
est la vitesse minimale, on obtient : 

vmin = ට2Ecmin

m
 = ට2 × 697 × 10–3

0,280
 = 2,23 m·s–1. 

On compare cette valeur en allant chercher, dans le 
tableur, la valeur de la norme de la vitesse v à cet 
instant. Pour notre exemple, dans le tableur : 
à t = 400 ms, on a v = 2,227 m·s–1, ce qui 
correspond tout à fait à la valeur calculée. 
c. Grâce au réticule de la fenêtre graphique, on 
mesure l’énergie potentielle maximale. 
Dans notre exemple, on mesure Eppmax = 2,389 J. 
Comme Eppmax = mgymax, on obtient : 

ymax = 
Eppmax

mg
 = 

2,389
0,280 × 9,81

 = 8,70 × 10–1 m 

On peut comparer cette valeur à la valeur de y dans 
le tableur. Dans notre exemple : à t = 400 ms, on a 
y = 0,868 m ce qui correspond tout à fait à la valeur 
calculée. La mesure et le calcul correspondent. 
4. Cette chute soudaine d’énergie est sans doute à 
chercher dans le fait qu’à ce moment, la vitesse de 
la balle devient suffisamment grande pour que les 
effets des frottements de l’air commencent à se faire 
sentir. La courbe de l’énergie potentielle semble 
continuer, comme attendu, mais la courbe de 
l’énergie cinétique semble stagner. Toute l’énergie 
potentielle n’est plus entièrement convertie en 
énergie cinétique. Une partie de cette énergie 
disparaît sous forme de chaleur. 

Bilan 
• En utilisant la conservation de l’énergie mécanique 
entre deux points, on peut connaître la norme de la 
vitesse du système en n’importe quel point. On peut 
aussi déterminer son altitude maximale. 
Cette constatation nécessite de disposer d’un point 
(origine, par exemple) où le mouvement est 
parfaitement connu. On peut alors calculer l’énergie 
mécanique du système et en déduire les 
informations citées précédemment. 
Ce travail ne dépend pas du choix de l’origine de 
l’énergie potentielle, même si, selon le choix, 
l’énergie mécanique du système sera différente. 
Comme l’utilisation de la conservation de l’énergie 
suppose de raisonner sur deux points, le décalage 
de l’énergie potentielle dû à un changement d’origine 
n’aura aucune incidence sur les résultats tirés de 
cette conservation. 

 
 
 
 
ᬇ Le condensateur plan 
Enregistrement réalisé avec une alimentation de 3,0 V. 
On mesure une longueur entre les deux plaques 
L = 14 cm. 
En faisant varier x en maintenant y = 0, on obtient le 
tableau de mesures suivant. 

x (en m) UOM (en V) 
0 0 

0,01 0,28 
0,02 0,448 
0,03 0,64 
0,04 0,834 
0,05 1,026 
0,06 1,234 
0,07 1,444 
0,08 1,645 
0,09 1,846 
0,1 2,046 

0,11 2,25 
0,12 2,457 
0,13 2,656 
0,14 3,012 

En faisant varier y en maintenant x = 7,0 cm, on 
obtient le tableau de mesures suivant. 

y (en m) UOM (en V) 
–0,04 1,445 
–0,03 1,446 
–0,02 1,446 
–0,01 1,445 

0 1,447 
0,01 1,449 
0,02 1,448 
0,03 1,45 
0,04 1,449 

La tension UOM ne varie pas lorsque l’on se déplace 
en maintenant x constant. 
 
1. a. Les mesures montrent que la tension est 
constante lorsque l’on se déplace en maintenant x 
constant. 
b. La droite représentant UOM en fonction de y est 
une droite horizontale, son coefficient directeur est 
nul. Cela implique que Ey est nulle. Ainsi, le champ 
électrique est dirigé uniquement selon (Ox). 
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2. a. En utilisant le tableur-grapheur de Latis-Pro 
dans notre exemple : 

 
b. La modélisation affine de notre exemple donne 
une pente égale à 20,54 V·m–1 et a une ordonnée à 
l’origine de 16,7 mV. L’ordonnée à l’origine est très 
faible (au regard des mesures réalisées). On peut 
considérer que la relation entre la tension et x est 
une fonction linéaire. 
c. Le coefficient directeur de la droite correspond à Ex. 
On en déduit donc que Ex = 20,54 V·m–1. 

Calculons le rapport 
U
L
 dans notre exemple : 

U
L
 = 

3,0

14 × 10–2 = 21,43 V·m–1 

Les deux valeurs sont suffisamment proches pour 

considérer que Ex = 
U
L
. 

3. a. Si on augmente U, Ex augmente aussi car Ex est 
proportionnelle à U. 
Si L diminue, Ex augmente car Ex est inversement 
proportionnelle à L. 
b. Il ne sera pas toujours simple de vérifier la 
prévision de l’influence de L, la plupart des cuves 
rhéographiques étant fabriquées pour avoir des 
armatures fixes. On peut cependant, avec 
l’encadrement de l’enseignant, introduire une plaque 
de cuivre (qu’on utilise en générale pour les TP pile) 
et la fixer d’une manière ou d’une autre ou même la 
tenir avec la pince crocodile qui permettra de la relier 
au générateur. 

Bilan 
• Le champ électrique est modifié si on change la 
distance entre les armatures et la tension imposée à 
la cuve. 
• On peut faire le calcul de la valeur maximale du 
champ électrique avec un générateur allant jusqu’à 

12V : Ex = 
U
L
 = 

12

14 × 10–2 = 86 V·m–1 

 
 
 
 
ᬈ Accélérateur linéaire 
1. a. La particule est chargée positivement, elle doit 
se déplacer vers une armature négative et être 
repoussée par une armature positive. 
b. 

 
c. v1 = 

q
m

U
L1

 t1 + v0   et   x(t1) = L1 = 
1
2

q
m

U
L1

 ଵଶ + v0t1ݐ 

Comme v0 = 0 : v1 = 
q
m

U
L1

 t1   et   L1 = 
1
2

q
m

U
L1

 ଵଶݐ 

On obtient : 

t1 = L1ට2m
qU

 = 2,7 × 10–2 × ට 2 × 1,67 × 10–27

1,60 × 10–19 × 24
 

t1 = 8,0 × 10–7 s 

v1 = 
q
m

U
L1

 t1 = ට2qU
m

 = ට2 × 1,60 × 10–19 × 24

1,67 × 10–27   

v1 = 6,8 × 104 m·s–1 
2. a. Si rien n’est fait, le proton rentrera dans une 
zone où il sera ralenti. Le champ électrique est en 
effet orienté dans le sens opposé à son mouvement. 
Comme il a une charge positive, la force qui 
s’applique sur lui est aussi opposée au mouvement. 

b. 

 

c. À la sortie de C2 : v2 = 
q
m

U
L
 t2 + v1   et   Ec(2) = 2qU 

1
2
mv2

2 = 2qU 

v2 = ට4qU
m

 = ට4 × 1,60 × 10–19 × 24

1,67 × 10–27  = 9,6 × 104 m·s–1 

Ainsi, comme v2 = 
q
m

U
L
 t2 + v1 : 

t2 = (v2 – v1)
mL
qU

  

t2 = (9,6 × 104 – 6,8 × 104 ) × 
1,67 × 10–27 × 2,7 × 10–2

1,60 × 10–19 × 24
 

t2 = 3,3 × 10–7 s 
t2 est inférieur à la moitié de t1. 
3. a. Si on veut que la particule passe le même 
temps dans chaque condensateur, on est obligé de 
modifier les tailles des condensateurs C2, C3, C4 et 
C5 en augmentant leurs tailles. 
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b. Le point énergétique indique : Ec(n) = nqU 

soit 
1
2
mvn

2 = nqU soit vn = ට2nqU
m

 

Si on veut que vn = 0,1c, on doit avoir ට2nqU
m

 = 0,1c. 

Soit n = 
0,01c2m

2qU
 
0,01 × ቀ2,998 × 108ቁ

2
 × 1,67 × 10–27

2 × 1,60 × 10–19 × 24
 

   n = 2,0 × 105 condensateurs 

c. Ln = 

T
2
ටqU

2m
 

ξn – ξn – 1
 

Application numérique : 

T
2
ටqU

2m
 = 8,0 × 10–7 × ට1,60 × 10–19 × 24

2 × 1,67 × 10–27  

 = 2,7 × 10–2 m = L1 
n 2 3 4 5 
1

ξn –  ξn – 1
 2,4 3,1 3,7 4,2 

Ln (en cm) 6,5 8,5 10 11 

Bilan 
• Le fait de disposer d’une succession de 
condensateurs permet d’augmenter fortement 
l’énergie cinétique (Ec(n) = nqU) en manipulant des 
tensions « faibles ». On obtient alors le même 
résultat énergétique qu’un seul condensateur avec 
une tension nU. 
• Si un proton suit le premier proton avec deux 
condensateurs plans d’écart, il se trouve lui-aussi 
dans une situation où il est sans arrêt accéléré par 
le dispositif. L’accélérateur linéaire permet 
d’accélérer des flux de particules « en continu ». 
• Si on veut fortement augmenter l’énergie de la 
particule, même en augmentant fortement la tension 
U, on sera obligé de faire des successions de 
condensateurs plans qui seront de plus en plus 
grands. Les condensateurs seront donc 
nécessairement très grands en « bout » 
d’accélérateur. L’accélérateur linéaire ne pourra donc 
pas être compact. 

 
 
 
Exercices 
Exercices 1 à 17 corrigés à la fin du manuel de l’élève. 
 
Exercices 18 à 20 corrigés dans le manuel de l’élève. 
 
21 a. Lorsque x = L, cela correspond à l’instant (que 

nous noterons t1) : L = v0cos(ɲ)t1   soit t1 = 
L

v0cos(ɲ). 
L’ordonnée correspondante est donc : 

y(t1) = – 
ଵ
ଶ
gt1

2 + v0sin(ɲ)t1 
Soit, en remplaçant t1 par son expression, on obtient : 

y(t1) = – 
1
2
g

L2
v02cos2(ɲ) + Ltan(ɲ) 

Si à cet instant y(t1) < –H, cela impliquera que le 
système est arrivé en y = –H avant d’atteindre 
l’abscisse x = L et le crash aura donc eu lieu au fond 
du canyon. Faisons l’application numérique : 
v0 = 150 km·h–1 = 41,7 m·s–1 

y(t1) = – 
1
2
 × 9,81 × 

ቀ1,25 × 103ቁ
2

41,72 × cos2(30,0°) 

+ 1,25 × 103 × tan(30,0°) 
y(t1) = –5,15 × 103 m 
Or H = 1,70 × 103 m. Le crash a donc bien lieu au 
fond du cayon. 
b. Le crash ayant lieu au fond du canyon, cela 
implique qu’il a lieu à l’instant (noté t1) où y(t1) = –H. 

–H = – 
1
2
gt2

2 + v0sin(ɲ)t2   soit 0 = – 
1
2
gt2

2 + v0sin(ɲ) t2 + H 
On doit résoudre un trinôme dont le discriminant est 
∆ = b2 – 4ac : ∆ = (v0sin(ɲ))2 + 2gH 
Ce discriminant est positif, il existe deux solutions. 
Nous ne nous intéressons qu’à la solution positive 
(la seconde solution n’ayant pas de sens physique) : 

t2 = 
–b – ξ∆

2a
 soit t2 = 

v0sin(ɲ) + ට�v0sin(ɲ)�
2 + 2gH

g
 

Application numérique : 

T2 = 
41,7 × sin(30,0°) + ට�41,7 × sin(30,0°)�2+ 2 × 9,81 × 1,70 × 103

9,81
 

T2 = 20,9 s 
À cet instant, l’abscisse est : 
xC = v0cos(ɲ)t2 = 41,7 × cos(30,0°) × 20,9 = 755 m 
On remarque que xC est inférieur à L, ce qui confirme 
le fait que le crash se fait au fond du canyon. 
Les coordonnées du crash sont donc : 
xC = 755 m   et   yC = 1,70 × 103 m 
 
Exercice 22 corrigé à la fin du manuel de l’élève. 
 
23 1. La norme du champ EሬԦ est : 

E = 
|U|
L

 = 
300

1,5 × 10–2 = 2,0 × 104 V·m–1 

2. a. La norme de la force électrique est : 
F = |q|E = 3,20 × 10–19 × 2,0 × 104 = 6,4 × 10–15 N 
FሬԦ = qEሬԦ. Comme q < 0, alors FԦ a le sens opposé et la 
même direction que EԦ. 
3. a. aԦ = 

q
m

 EԦ 
q est négative, mais iԦ est dans le sens de FԦ. 
aሬԦ = 

q
m

U
L
 iԦ En norme : a = 

q
m

U
L
 

a = 
3,20 × 10–19 × 300 

1,60 × 10–25 × 1,5 × 10–2 = 4,0 × 1010 m·s–2 

b. vx(t) = 
qU
mL

t   et   x(t) = 
1
2

qU
mL

t2 
c. Notons t = t1 l’instant où le proton se trouve à 
x(t1) = L. 

Soit vx(t1) = ට2qU
m

 = ට2 × 3,20 × 10–19 × 300

1,60 × 10–25  

vx(t1) = 3,5 × 104 m·s–1 
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24 a. Dans le triangle 
rectangle : 

cos(ɲ) = 
v0x
v0

  et  sin(ɲ) = 
v0y

v0
 

On en déduit : 

൜
v0x = v0 cos (ɲ)
v0y = v0 sin (ɲ)  

b. À l’instant initial (point 
O) : Epp(O) = mgy0 = 0 puisqu’à l’instant initial, le 
système se trouve au niveau de l’origine. 

Ec(O) = 
1
2
mv0

2 = 
1
2
 × 4,50 × 4,802 = 51,8 J 

Ainsi : Em(O) = Epp(O) + Ec(O) = 51,8 J 
c. L’énergie mécanique du système est conservée 
pendant tout le vol du système car le système n’est 
soumis qu’au poids qui est une force conservative. 
d. En un point quelconque de la trajectoire, cette 
conservation s’écrit : Em(O) = Em(M) 

soit   
1
2
mv0

2 = 
1
2
mv2 + Epp = mgy 

En simplifiant les m de chaque côté de l’égalité, on 

obtient la vitesse à l’altitude y : v = ටv0
2 –  2gy 

Pour y = 0,15 m, on obtient : 

v = ඥ4,82 – 2 × 9,81 × 0,15 = 4,5 m·s–1 
 
25 Le référentiel d’étude est considéré comme 
galiléen. Le système étant soumis uniquement à son 
poids, la deuxième loi de Newton s’écrit maሬԦ = PሬԦ. 
Comme PሬԦ = mgሬԦ, soit aሬԦ = gሬԦ = –g jԦ, le mouvement du 
système est uniformément accéléré. 

Sachant que aሬԦ = 
dvԦ
dt

 et que aሬԦ = gሬԦ, on a en projection 

sur les axes : ቐ
dvx
dt

= 0
dvy

dt
= –g

 

En cherchant les primitives et en utilisant les 
conditions initiales (vԦ(0) = vԦ0), on en déduit que : 

 ൜
vx(t) = v0 cos(ɲ)

vy(t)= –gt + v0 sin(ɲ) 

Sachant que vԦ(t) = 
dOMሬሬሬሬሬሬԦ

dt
(t), on a donc : 

 ቐ
dx
dt

= v0cos(ɲ)

dy
dt

= –gt + v0sin(ɲ)
 

En cherchant les primitives et en utilisant les 
conditions initiales (le système est à l’origine), on en 

déduit : ቊ
x(t) = v0cos(ɲ)t

y(t) = – 1
2 gt2 + v0sin(ɲ)t

 

 
Exercice 26 corrigé à la fin du manuel de l’élève. 
 
27 a. La position à tout instant : 

 ቊ
x(t) = v0cos(ɲ)t

y(t) = – 1
2 gt2 + v0sin(ɲ)t

 

On peut isoler la variable t et trouver l’équation du 
mouvement : t = 

x
v0cos(ɲ) 

Ainsi, en remplaçant t dans l’expression de y, on 

obtient : y = – 
1
2
 g 

x2
v0

2cos2(ɲ) + xtan(ɲ) 

b. La portée du tir correspond à y = 0. 

Soit 0 = – 
1
2
 g 

x2
v0

2cos2(ɲ) + xtan(ɲ) 

En factorisant par x : 0 = xቀ– 1
2

g
x

v0
2cos2(ɲ)  + tan(ɲ)ቁ 

Il existe deux solutions à cette égalité : 
- la solution x = 0 qui correspond à l’origine (la 
position initiale du système) ; 

- la solution de – 
1
2
 g 

xp

v0
2cos2(ɲ) + tan(ɲ) = 0 qui 

correspond à la portée du tir. 

Ainsi, xp = 
2v0

2cos2(ɲ)tan(ɲ)
g

 

Comme tan(ɲ) = 
sin(ɲ)
cos(ɲ), en simplifiant par cos(ɲ) : 

xp = 
2v0

2cos(ɲ)sin(ɲ)
g

 

Application numérique : 

xp = 
2 × 4,82 × cos(40°)sin(40°)

9,81
 = 2,3 m 

 
28 a. Les coordonnées de la position initiale (t = 0) 

sont : ൜
x0 = 0 m

y0 = 2,5 m 

b. L’instant d’arrivée au sommet (au moment où y 
est maximum) est ts = 1,4 s. À cet instant, la hauteur 
atteinte (l’ordonnée y) est h = ys = 11,75 m. 
c. L’instant d’arrivée au sommet (au moment où y 
devient nulle) est tf = 2,95 s. À cet instant, la distance 
parcourue (l’abscisse x) est L = xf = 17,25 m 
 
29 a. Les coordonnées de la vitesse initiale (t = 0) 

sont : ൜
v0x = 6,5 m·s–1

v0y = 10,0 m·s–1 

b. La norme v0 est : 
v0 =ඥv0x2 + v0y2  

v0 = ඥ6,52 + 10,02 
v0 = 11,9 m·s–1 

Comme ൜
v0x = v0 cos (ɲ)
v0y = v0 sin (ɲ)  , on en déduit que cos(ɲ) = 

v0x
v0

. 

ɲ = arccosቀv0x
v0
ቁ = arccosቀ 6,5

11,9
ቁ = 57° 

c. L’instant d’arrivée au sommet (au moment où vy 
devient nulle) est ts = 1,0 s. À cet instant, la norme 
de la vitesse correspond à vx qui est lui-même 
constant tout au long du mouvement : 
v(ts) = v0x = 6,5 m·s–1 
 
30 a. Le référentiel est supposé galiléen. Le système 
étant soumis uniquement à son poids, la deuxième 
loi de Newton s’écrit maԦ = PԦ. Comme PԦ = mgԦ, cela 
donne  aሬԦ = gሬԦ = –g jԦ : le mouvement du système est 
uniformément accéléré. 

b. ൜
v0x = 0
v0y = v0

 

aሬԦ = gሬԦ, on a en projection sur les axes : ቐ
dvx
dt

= 0
dvy

dt
= –g
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En cherchant les primitives et en utilisant les 
conditions initiales (vԦ(0) = vԦ0), on en déduit que : 

 ൜
vx(t) = 0

vy(t) = –gt + v0
 

Sachant que vԦ(t) = 
dOMሬሬሬሬሬሬԦ

dt
(t), on a donc : ቐ

dx
dt

 = 0
dy
dt

 = –gt + v0

 

En cherchant les primitives et en utilisant les 
conditions initiales (le système est à l’origine), on en 

déduit : ቊ
x(t) = 0

y(t) = – 1
2 gt2 + v0t

 

c. Le système atteint le sommet lorsque vy devient 
nulle : vy(ts) = –gts + v0 = 0   soit ts = 

v0

g
. 

L’altitude du sommet est donc : y(ts) = – 
1
2
gts2 + v0ts 

soit, en remplaçant : y(ts) = 
1
2

v02
g

 

Application numérique avec v0 = 97 km·h–1 = 27 m·s–1 : 

y(ts) = 
1
2
 × 

272
9,81

 = 37 m 

Un oiseau qui passe à une altitude de 100 m n’a 
donc rien à craindre. 
d. Le carreau retombe au sol lorsque son ordonnée 

devient nulle (y = 0) : y(t) = – 
1
2
gt2 + v0t = 0 

En factorisant par t : tቀ– 1

2
gt + v0ቁ = 0 

Deux solutions : 
• t = 0 : c’est l’origine ; 

• – 
1
2
gtf + v0 = 0 : c’est l’instant où le carreau 

retombe au sol. 

Ainsi, tf = 
2v0

g
 = 

2 × 27
9,81

 = 5,5 s. 

 
Exercice 31 corrigé à la fin du manuel de l’élève. 
 
32 Sur la Lune, la mise en équations est la même, 
mais g est remplacée par gL : 

tchute = ට2h
g

   et   vsol = ඥ2hg 

Ainsi : 
 Sur la Terre Sur la Lune 

h = 1,90 m 
tchute = 0,622 s 

vsol = 6,11 m·s–1 
tchute = 1,53 s 

vsol = 2,48 m·s–1 

h = 16,0 m 
tchute = 1,81 s 

vsol = 17,7 m·s–1 
tchute = 4,44 s 

vsol = 7,20 m·s–1 
 

33 a La deuxième loi de Newton dit : maԦ = PԦ 
Ainsi, l’unité de la force (le newton N) est égale à 
l’unité de la masse multipliée par l’unité de 
l’accélération : 1 N = 1 kg·m·s–2 
b. P = mg indique que g s’exprime en N·kg–1. 
maԦ = PԦ implique aሬԦ = gሬԦ : g s’exprime aussi en m·s–2. 
c. L’instant d’arrivée au sommet de la trajectoire 

s’écrit tS = 
v0 sinɲ

g
. Le terme de gauche ts s’exprime 

en secondes (s). Le terme de droite 
v0 sinɲ

g
 s’exprime 

en 
m·s–1 × 1

m·s–2  = s. Les deux termes ont la même unité, 
l’égalité est homogène. 

d. La trajectoire du projectile a pour équation : 

y(x) = – 
1
2
 g 

x2
v02cos2(ɲ) + tan(ɲ)x 

y s’exprime en m. Le terme – 
1
2
 g 

x2
v02cos2(ɲ) s’exprime 

en m·s–2 × 
m2

�m·s–1�
2
 × 1

 = 
m3·s–2

m2·s–2 = m. Le deuxième 

terme tan(ɲ)x s’exprime en 1 × m = m. 
Tous les termes de l’égalité s’expriment dans la 
même unité. L’équation est homogène. 
 
Exercices 34 et 35 corrigés à la fin du manuel de l’élève. 
 
36 a. Dans le triangle rectangle : 

cos(ɲ) = 
v0x
v0

  et  sin(ɲ) = 
v0y

v0
 

On en déduit : ൜
v0x = v0 cos (ɲ)
v0y = v0 sin (ɲ)  

b. Le système étant soumis 
uniquement à son poids, la 
deuxième loi de Newton s’écrit maሬԦ = PሬԦ. 
Comme PԦ = mgԦ, ainsi aԦ = gԦ = –g jԦ : le mouvement du 
système est uniformément accéléré. 

Sachant que aԦ = 
dvԦ
dt

 et que aԦ = gԦ, on a en projection 

sur les axes : ቐ
dvx
dt

= 0
dvy

dt
= –g

 

En cherchant les primitives et en utilisant les 
conditions initiales (vԦ(0) = vԦ0), on en déduit que : 

൜
vx(t) = v0 cos(ɲ)

vy(t)= –gt + v0 sin(ɲ) 

Sachant que vԦ(t) = 
dOMሬሬሬሬሬሬԦ

dt
(t), on a donc : ቐ

dx
dt

= v0cos(ɲ)

dy
dt

= –gt + v0sin(ɲ)
 

En cherchant les primitives et en utilisant les 
conditions initiales (le système est à l’origine). 

On en déduit : ቊ
x(t) = v0cos(ɲ)t

y(t) = – 1

2
gt2 + v0sin(ɲ)t

 

c. Lorsque y = 0, cela correspond au moment où le 
système décolle (à t = 0), puis au moment de la 

réception du saut (à t = t1). Ainsi, 0 = – 
1
2
 gt2 + v0sin(ɲ)t. 

En factorisant par t : 0 = tቀ– 1
2 gt + v0sin(ɲ)ቁ 

Cette équation est vraie : 
• si t = 0 ; 

• si – 
1
2
gt1 + v0sin(ɲ) = 0   soit t1 = 

2v0sin(ɲ)
g

. 

d. La portée du saut correspond à l’abscisse de ce 
point, soit x(t1) : x(t1) = v0cos(ɲ)t1 

En replaçant et en simplifiant : x(t1) = 
 2v02cos(ɲ)sin(ɲ)

g
 

e. À partir de la précédente relation, on obtient : 

v0 = ට x(t1)g
2cos(ɲ)sin(ɲ) 

Application numérique : 

v0 = ට 15 × 9,81
2 × cos(45°) × sin(45°) = 12 m·s–1 = 43 km·h–1 
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37 Faisons l’hypothèse d’une chute sans vitesse 
initiale. Déterminons l’altitude maximale hmax 
correspondant à l’absorption maximale du choc, 
c’est-à-dire correspondant à une énergie cinétique 
égale à 0,50 J. La conservation de l’énergie 
mécanique implique : Em(I) = Em(F) 
Ec(I) + Epp(I) = Ec(F) + Epp(F)  
Comme la vitesse initiale est nulle, Ec(I) = 0. En 
prenant comme origine des altitudes le sol, Epp(F) = 0. 
On obtient : Epp(I) = Ec(F)   soit mghmax = Ec(F) 

soit hmax = 
Ec(F)
mg

 = 
0,50

0,188 × 9,81
 = 0,27 m = 27 cm. 

 
38 a. Le système étant soumis uniquement à son 
poids, la deuxième loi de Newton s’écrit maԦ = PԦ. 
Comme PԦ = mgԦ, ainsi aԦ = gԦ = –g jԦ : le mouvement du 
système est uniformément accéléré. 
Comme la vitesse est nulle à l’instant initial, le 
vecteur vitesse vԦ aura la même direction que le 
vecteur accélération aሬԦ, à tout moment de la chute. 
Le mouvement sera donc rectiligne uniquement selon 

(Oy) (mouvement unidirectionnel). Ainsi, 
dvy

dt
 = –g. 

En cherchant la primitive et en utilisant les conditions 

initiales (vԦ(0) = 0ሬԦ), on en déduit : vy(t) = –gt 

Sachant que vԦ(t) = 
dOMሬሬሬሬሬሬԦ

dt
(t), on a donc 

dy
dt

 = –gt. 

En cherchant les primitives et en utilisant les 
conditions initiales (le système est à l’origine), on en 

déduit : y(t) = – 
1
2
 gt2 

b. L’instant t1 correspondant à la fin de sa chute : 
y(t1) = –7 620 + 76 = –7 544 m 

y(t1) = – 
1
2
 gt1

2 

t1 = ට– 2y(t1)
g

 = ට– 2 × (–7 544)
9,81

 = 39,2 s 

La norme de la vitesse du système à ce moment-là 
est : v(t1) = |–gt1| = |–9,81 × 39,2| = 385 m·s–1 
c. Le système ne subit que son poids, son énergie 
mécanique est conservée : Emi = Emf 
Eppi + Eci = Eppf + Ecf 
L’origine du repère est prise au point de départ 
(y = 0). Ainsi, l’énergie potentielle de pesanteur est 
nulle au point de départ (Eppi = 0). 
À l’instant initial, la vitesse du système est nulle, 
son énergie cinétique sera donc nulle aussi (Eci = 0). 
On obtient donc : 0 = Eppf + Ecf 

soit –Eppf = Ecf d’où 
1
2
mv2 = –mgyf = –mgy(t1) 

Soit v = ඥ–2gy(t1) = ඥ–2 × 9,81 × (–7 544) = 385 m·s–1 

On retrouve le résultat précédent. 
d. t1 = 39,2 s est très inférieur à Δt = 120 s. De plus, 
la vitesse calculée (v = 385 m·s–1) est très supérieure 
à la vitesse mesurée (53,6 m·s–1). L’hypothèse 
erronée utilisée est le fait que le système ne subisse 
que son poids. À partir d’une certaine vitesse, les 
forces de frottement de l’air ne sont en effet plus 
négligeables. 

39 a. Dans le triangle 
rectangle : 

cos(ɲ) = 
v0x
v0

 et sin(ɲ) = 
v0y

v0
 

On en déduit : 

൜
v0x = v0 cos (ɲ)
v0y = v0 sin (ɲ)  

b. Le système étant soumis uniquement à son poids, 
la deuxième loi de Newton s’écrit maԦ = PԦ. 
Comme PԦ = mgԦ, ainsi aԦ = gԦ = –g jԦ : le mouvement du 
système est uniformément accéléré. 

Sachant que aԦ = 
dvԦ
dt

 et que aԦ = gԦ, on a en projection 

sur les axes : ቐ
dvx
dt

= 0
dvy

dt
= –g

 

En cherchant les primitives et en utilisant les 
conditions initiales (vԦ(0) = vԦ0), on en déduit que : 

 ൜
vx(t) = v0 cos(ɲ)

vy(t)= –gt + v0 sin(ɲ) 

Sachant que vԦ(t) = 
dOMሬሬሬሬሬሬԦ

dt
(t), on a donc : ቐ

dx
dt

= v0cos(ɲ)

dy
dt

= –gt + v0sin(ɲ)
 

En cherchant les primitives et en utilisant les 
conditions initiales (le système est à l’origine), on en 

déduit : ቊ
x(t) = v0cos(ɲ)t

y(t) = –
1

2
gt2 + v0sin(ɲ)t

 

c. Les coordonnées du système au moment de 

l’atterrissage sont : ൜
xf =  85,0 m
yf = 2,00 m 

d. On peut isoler la variable t et trouver l’équation du 
mouvement : t = 

x
v0cos(ɲ) 

Ainsi, en remplaçant dans l’expression de y : 

y = – 
1
2
 g 

x2
v02cos2(ɲ) + xtan(ɲ) 

La norme de la vitesse initiale v0 : 

yf = – 
1
2
 g 

xf2
v0
  2cos2(ɲ)

 + xftan(ɲ) 

soit v0 = ට
1
2

g
xf2

�xftan(ɲ) – yf�cos2(ɲ) 

Application numérique : 

v0 = ට1
2

 × 9,81 × 85,02
(85,0 × tan(35,0°) – 2,00)cos2(35,0°) 

v0 = 30,3 m·s–1 = 109 km·h–1 
 
40 a. Cette affirmation est fausse. Si la particule 
subit une force, elle sera accélérée (elle subira une 
accélération non nulle). Ici, elle se trouve dans un 
champ électrique et elle porte une charge électrique. 
Elle subit donc une force (FሬԦ = qEሬԦ). 
b. Cette affirmation est fausse. L’accélération aura 
même sens et même direction que la force électrique 
FԦ. Or FԦ = qEԦ. Ainsi, l’accélération aura le même sens 
et la même direction que EԦ seulement si la charge 
portée par la particule est positive. 
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c. Si cette particule est freinée, cela implique que 
l’accélération subie et donc la force subie est 
opposée à la vitesse initiale. Mais encore une fois, 
FԦ = qEԦ. La particule est freinée si EԦ est de sens 
opposé à sa vitesse initiale, uniquement si la charge 
portée par la particule est positive. 
d. Cette affirmation est fausse. Si on utilise la 
deuxième loi de Newton, on obtient : aԦ = 

q
m

 EሬԦ 
L’accélération est inversement proportionnelle à la 
masse. 
 
41 a. La vitesse de l’ion est la dérivée par rapport à t 
de l’abscisse (le mouvement est unidirectionnel). 
Celle-ci correspond à la pente de la tangente au point 
considéré. 
Si on s’intéresse à l’instant initial, on remarque sur 
la courbe que la tangente à la courbe est l’axe du 
temps. Cette droite a une pente nulle. 
La vitesse à l’instant initial est donc v0 = 0. 
b. Deux possibilités 
s’offrent à nous 
pour déterminer sa 
vitesse en sortie du 
condensateur 
(x = 15 cm) : 
1. Déterminer la 
pente à cet instant-
là. Cette pente 
passe par deux 
points mesurables aisément : 

v = 
xB – xA

tB – tA
 = 

0,15 – 0
40 × 10–9 – 20 × 10–9 = 7,5 × 106 m·s–1 

2. Utiliser la solution littérale : vx(t) = 
qU
mL

t et x(t) = 
1
2

qU
mL

t2 

Comme à t = 40 × 10–9 s, x = 0,15 m : 
qU
mL

 = 
2x(t)

t2
 

Application numérique : 
qU
mL

 = 
2 × 0,15

ቀ40 × 10–9ቁ
2 = 1,9 × 1014 m·s–2 

La vitesse à l’instant t = 40 × 10–9 s vaut : 

vx(t) = 
qU
mL

t = 1,9 × 1014 × 40 × 10–9 = 7,5 × 106 m·s–1 
c. On en déduit la tension aux bornes du 

condensateur : 
qU
mL

 = 
2x(t)

t2
 

U = 
2x(t)

t2
 × 

mL
q

 = 
2 × 0,15

ቀ40 × 10–9ቁ
2 × 

4,49 × 10–26 × 0,15

3 × 1,60 × 10–19  

U = 2,6 × 106 V = 2,6 MV 
 
42 a. On suppose que le référentiel d’étude est 
galiléen. Le système étant soumis uniquement à la 
force électrique, la 
deuxième loi de Newton 
s’écrit maሬԦ = FሬԦ. Comme 
FሬԦ = qEሬԦ, cela donne 
maሬԦ = qEሬԦ. Ainsi, aሬԦ = 

q
m

 EሬԦ. 

iԦ est orienté de la même 
manière que qEԦ et q est 

positive : aԦ = 
qU
mL

 iԦ 
b. Voir schéma ci-contre. 

c. En norme : aԦ = 
dvԦ
dt

 Ainsi, aԦ = 
qU
mL

 iԦ. Il vient, en 

projection sur iԦ : 
dvx
dt

 = 
qU
mL

 

La primitive est vx(t) = 
qU
mL

t + C1   avec C1 constante. 
Or la vitesse initiale est nulle : vx(0) = C1 = 0 

Ainsi, vx(t) = 
qU
mL

t. Ceci s’écrit aussi 
dx
dt

 = 
qU
mL

t. 

La primitive est x(t) = 
1
2

qU
mL

t2 + C2   avec C2 constante. 
Or la position initiale du proton est l’origine de l’axe : 

x(0) = C2 = 0. On en déduit que x(t) = 
1
2

qU
mL

t2. 

d. vx(t) = 
qU
mL

t 

Et la norme du champ électrique est E = 
U
L
. 

On a donc vx(t) = 
qE
m

t   soit E = 
mvx(t)

qt
. 

Application numérique : 

E = 
3,44 × 10–25 × 3,0 × 106

3,20 × 10–19 × 1,0
 = 3,2 V·m–1 

e. La distance parcourue à cet instant : 

x(t) = 
1
2

qU
mL

t2 = 
1
2

qE
m

t2 
Application numérique : 

x(t) = 
3,20 × 10–19 × 3,2

2 × 3,44 × 10–25  × 1,0 = 1,5 × 106 m 

 
43 a. La particule étant positive, l’armature A doit 
être chargée positivement (et B négativement) pour 
qu’il y ait accélération. On en déduit que l’armature A 
est reliée à la borne positive du générateur.  
b. La norme du champ EԦ est : 

E = 
|U|
L

 = 
4,0 × 106

7,62
 = 5,2 × 105 V·m–1 

La force électrique a pour norme F = qE. 
F = 1,60 × 10–19 × 5,2 × 105 = 8,3 × 10–14 N 
c. En choisissant 
comme échelle pour 
le champ électrique 
1 cm correspond à 
2,5 × 105 V·m–1, on 
obtient une flèche 
de longueur 2,1 cm 
pour le vecteur 
champ électrique. 
En choisissant comme échelle pour la force 1 cm 
correspond à 4 × 10–14 N, on obtient une flèche de 
longueur 2,1 cm pour le vecteur force. 
d. On suppose que le référentiel d’étude est galiléen. 
Le système étant soumis uniquement à la force 
électrique, la deuxième loi de Newton s’écrit maԦ = FԦ. 
Comme FሬԦ = qEሬԦ, cela donne maԦ = qEԦ. Ainsi aԦ = 

q
m

 EԦ. 
q est positive : aԦ = 

qU
mL

 iԦ 

En norme, aԦ = 
dvԦ
dt

   et   q = e. Ainsi aԦ = 
eU
mL

 iԦ. 

Il vient, en projection sur iԦ : dvx
dt

 = 
eU
mL

 

La primitive est vx(t) = 
eU
mL

t + C1   avec C1 constante. 
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Or la vitesse initiale est nulle : vx(0) = C1 = 0 

Ainsi, vx(t) = 
eU
mL

t. Cela s’écrit aussi 
dx
dt

 = 
eU
mL

t. 

La primitive est x(t) = 
1
2

eU
mL

t2 + C2   avec C2 constante. 

Or la position initiale du proton est l’origine de l’axe : 

x(0) = C2 = 0. On en déduit que x(t) = 
1
2

eU
mL

t2. 

e. Notons t = t1, l’instant où le proton se trouve à 
x(t1) = L (en B). 

Ainsi, x(t1) = L = 
1
2

eU
mL

t1
2. On en déduit t1

2 = 
2mL2

eU
. 

À cet instant, la vitesse du proton est : 

vx(t1) = 
eU
mL

 t1 = 
eU
mL

 × Lට2m
eU

 

soit vx(t1) = ට2eU
m

 = ට2 × 1,60 × 10–19 × 4,0 × 106

1,67 × 10–27  

 vx(t1) = 2,8 × 107 m·s–1 
Cette vitesse finale ne dépend pas de la distance 
entre les armatures. 
f. À l’instant initial, la vitesse du proton est nulle. 

Son énergie cinétique Ec(I) = 
1
2
mv0

2 est nulle. 
D’après le théorème de l’énergie cinétique : 
Ec(F) – Ec(I) = qUIF 
Or q = e,   UIF = U   et   Ec(I) = 0. 
On en déduit : Ec(F) = eU 

1
2
mvF

2 = eU soit vF = ට2eU
m

 

On retrouve l’expression obtenue précédemment. 
 
44 a. On suppose que le référentiel d’étude est 
galiléen. Le système étant soumis uniquement à la 
force électrique, la deuxième loi de Newton s’écrit 
maԦ = FԦ. Comme FԦ = qEԦ, cela donne maԦ = qEԦ. 
Ainsi aԦ = 

q
m

 EԦ. 
q est négative : aԦ = 

–e
m

 EԦ 
b. Pour que l’antiproton soit décéléré, il faut que 
l’accélération soit dirigée selon le sens inverse du 

mouvement. Comme aԦ = 
–e
m

 EԦ, EԦ est dirigé dans le 

sens inverse de aԦ. 
Cela implique que le champ électrique doit être dirigé 
dans le sens du mouvement. 
c. En choisissant l’orientation de iԦ comme 
correspondant à l’orientation du mouvement, EԦ = EiԦ. 
Ainsi, aԦ = 

–e
m

EiԦ. Il vient, en projection sur iԦ, dvx
dt

 = – 
eE
m

. 

La primitive est vx(t) = – 
eE
m

t + C1   avec C1 constante. 
Or la vitesse initiale est nulle : vx(0) = C1 = v0 

Ainsi, vx(t) = – 
eE
m

t + v0. Cela s’écrit aussi 
dx
dt

 = – 
eE
m

t + v0. 

La primitive est x(t) = – 
1
2

eE
m

t2 + v0t + C2   avec C2 
constante. Or la position initiale du proton est 
l’origine de l’axe : x(0) = C2 = 0 

On en déduit que x(t) = – 
1
2

eE
m

 t2 + v0t. 
d. L’antiproton est à l’arrêt après avoir parcouru une 
distance D = 15 m. À ce moment-là, vx(tf) = 0, 

soit – 
eE
m

tf + v0 = 0 soit tf = 
mv0

eE
. 

Et à ce moment-là, x(tf) = 15 m. 

x(tf) = – 
1
2

eE
m

tf
2 + v0tf 

Soit, en remplaçant l’expression de tf : x(tf) = 
1
2

mv02
eE

 

On arrive à isoler E : E = 
1
2

mv02
e x(tf)

 
Application numérique : 

E = 
1
2
 × 

1,67 × 10–27 × ቀ2,5 × 106ቁ
2

1,60 × 10–19 × 15
 = 2,2 × 103 V·m–1 

 

45 a. La norme de E est E = 
U
L
. 

La tension à appliquer correspond à U = EL. 
Application numérique : 
U = 1 000 × 103 × 2,0 × 10–2 = 2,0 × 104 V 
b. On suppose que le référentiel d’étude est galiléen. 
Le système étant soumis uniquement à la force 
électrique, la deuxième loi de Newton s’écrit maԦ = FԦ. 
Comme FԦ = qEԦ, cela donne maԦ = qEԦ. Ainsi, aԦ = 

q
m

 EԦ. 
q est négative : aԦ = 

–e
m

EሬԦ   en choisissant l’orientation 

de iԦ comme correspondant à l’orientation de qEԦ. 
aԦ = 

dvԦ
dt

   et   q = –e. Ainsi, aԦ = 
eU
mL

 iԦ (ce qui implique 

que EԦ = –EiԦ). Il vient, en projection sur iԦ : dvx
dt

 = 
eE
m

 

La primitive est vx(t) = 
eE
m

t + C1   avec C1 constante. 
Or la vitesse initiale est nulle : vx(0) = C1 = 0 

Ainsi, vx(t) = 
eE
m

t. Ceci s’écrit aussi 
dx
dt

 = 
eE
m

t. 

La primitive est x(t) = 
1
2

eE
m

t2 + C2   avec C2 constante. 
Or la position initiale du proton est l’origine de l’axe : 

x(0) = C2 = 0. On en déduit que x(t) = 
1
2

eE
m

t2. 
c. L’électron atteint l’armature positive, lorsque x(tf) = L : 
1
2

eE
m

tf
2 = L soit tf = ට2mL

eE
 

Application numérique : 

tf = ට2 × 9,11 × 10–31 × 2,0 × 10–2

1,60 × 10–19 × 1 000 × 103  = 4,8 × 10–10 s 

Cette durée n’est par perceptible par l’œil humain. Il 
observera donc l’arc électrique mais ne pourra en 
aucun cas observer sa formation. 
 
46 a. À la sortie du moteur, l’énergie cinétique d’un 

ion xénon est Ec(F) = 
1
2
mv0

2. 
Avec v0 = 50 km·s–1 = 5,0 × 104 m·s–1 : 

Ec(F) = 
1
2
 × 2,18 × 10–25 × (5,0 × 104)2 = 2,7 × 10–16 J 

b. Au cours de l’accélération, le travail de la force 
électrique (constante) est moteur et vaut : 
WIF�FሬԦ� = FሬԦ ڄ�IFሬሬԦ = FL 

Comme FԦ = qEԦ et que q est positif, WIF�FሬԦ� = qEL. 

Comme la norme du champ électrique est E = 
U
L

 : 

WIF�FሬԦ� = q
U
L
L = qU 
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D’après le théorème de l’énergie cinétique : 
Ec(F) – Ec(I) = WIF�FሬԦ� = qU 
Or à l’instant initial la vitesse des ions est nulle, 
l’énergie cinétique aussi : Ec(F) = qU 

On en déduit : U = 
Ec(F)

q
 = 

2,7 × 10–16

1,60 × 10–19 = 1,7 × 103 V 

c. I = 
Q
∆t

 soit Q = I∆t 
Comme la charge apportée est la charge des N ions 
xénon émis : Nq = I∆t 

Soit N = 
I∆t
q

 = 
3,52 × 1

1,60 × 10–19 = 2,20 × 1019 

d. L’énergie cinétique de l’ensemble des ions xénon 
émis, en une seconde est : Ec = NEc(F) 
Ec = 2,20 × 1019 × 2,7 × 10–16 = 5,9 × 103 J 

La puissance du moteur sera donc : P = 
Ec

∆t
 = 

NEc(F)
∆t

 
Application numérique : 

P = 
2,2 × 1019 × 2,7 × 10–16

1
 = 5,9 × 103 W = 5,9 kW 

 
47 a. Le référentiel est supposé galiléen. Le système 
étant soumis à son poids et à la force électrique, la 
deuxième loi de Newton s’écrit maሬԦ = PሬԦ + FሬԦ. 
Comme PሬԦ = mgሬԦ et FԦ = qEԦ, cela donne maሬԦ = mgሬԦ + qEሬԦ. 
Comme gሬԦ = –gjԦ   et   EሬԦ = –EiԦ, et comme q = –e : 

aሬԦ = gሬԦ + 
q
m

 EሬԦ = –g jԦ – 
e
m

 (–EiԦ)   soit aሬԦ = –g jԦ + 
e
m

EiԦ 

Sachant que aሬԦ = 
dvԦ
dt

, on a en projection sur les axes : 

൞

dvx

dt
 = 

e
m

E

dvy

dt
 = –g

 

En cherchant les primitives et en utilisant les 
conditions initiales (vԦ(0) = 0ሬሬԦ), on en déduit que : 

൝
vx(t) = 

e
m

Et

vy(t) = –gt
 

Sachant que vԦ(t) = 
dOMሬሬሬሬሬሬԦ

dt
(t), on a donc : ቐ

dx
dt

 = e
m

Et

dy
dt

 = –gt
 

En cherchant les primitives et en utilisant les 
conditions initiales (le système est à l’origine), on en 

déduit : ቐ
x(t) = 1

2
e
m Et2

y(t) = – 1
2 gt2

 

b. L’électron arrive à l’armature positive lorsque x(tf) = L. 

À ce moment-là, y(tf) = d : x(tf) = 
1
2

e
m

Etf
2 = L 

Comme E = 
U
L
 : 

1
2

e
m

U
L
tf

2 = L   soit tf = Lට2m
eU

 

Application numérique : 

tf = 5,00 × 10–2 × ට 2 × 9,11 × 10–31

1,60 × 10–19 × 5 000
 = 2,39 × 10–9 s 

À cet instant : y(tf) = – 
1
2
 gt2 = d 

d = – 
1
2
 g 

2mL2
eU

 soit d = –g 
mL2

eU
  

Application numérique : 

d = –9,81 × 
9,11 × 10–31 × ቀ5,00 × 10–2ቁ

2

1,60 × 10–19 × 5 000
 

d = –2,79 × 10–17 m 
c. À cet instant-là, on peut écrire les coordonnées du 
vecteur vitesse de la manière suivante : 

vԦ(tf) ൬
vx(tf) = v(tf) cos (ɲ)
vy(tf) = –v(tf) sin (ɲ)൰   comme ቊ

vx(tf) = e
m Etf

vy(tf) = –gtf
. 

Application numérique : 

൞
vx(tf) = 

1,60 × 10–19

9,11 × 10–31  × 
5 000

5,00 × 10–2  × 2,39 × 10–9 = 4,20 × 107 m·s–1

vy(tf) = –9,81 × 2,39 × 10–9 = 2,34 × 10–8 m·s–1

 

Calculons tout d’abord la norme de la vitesse : 

v(tf) = ට�vx(tf)�
2 + ቀvy(tf)ቁ

2
 

Application numérique : 

v(tf) = ට�4,20 × 107�
2

 + �2,34 × 10–8�
2
 

v(tf) = 4,20 × 107 m·s–1 

Comme cos(ɲ) = 
vx(tf)
v(tf)

, l’application numérique donne 

ɲ = 0,00° avec la précision des calculs. 
d. L’angle est, en tenant compte de la précision des 
données, inexistant. Le décalage d = –2,8 × 10–17 m 
est 102 fois plus petit que le noyau d’un atome. 
La prise en compte du poids dans cet exemple est 
totalement inutile. 

e. La déviation d = –g 
mL2
eU

 est proportionnelle à la 
masse. Dans le cas du proton, cette déviation sera 
donc de l’ordre de : 
d’ = –2 000 × 2,79 × 10–17 = 6 × 10–14 m 
Cette déviation est encore 1 000 fois plus petite que 
la taille d’un atome. 
La prise en compte du poids dans cet exemple est, 
une nouvelle fois, totalement inutile. 
 
48 Faisons l’hypothèse d’une chute sans vitesse 
initiale. Notons l’altitude de départ h (pour être en 
accord avec les notations de l’énoncé) et v la vitesse 
atteinte au moment du choc sur le sol. 
On choisit comme origine des altitudes le sol. La 
conservation de l’énergie mécanique implique : 
Em(I) = Em(F) 
Ec(I) + Epp(I) = Ec(F) + Epp(F) 
Comme la vitesse initiale est nulle, Ec(I) = 0 et comme 
l’altitude finale de la voiture est nulle, Epp(F) = 0. 
On obtient : Epp(I) = Ec(F) 

soit mgh = 
1
2
mv2 soit h = 

1
2

v2
g
 

Applications numériques 

À 50 km·h–1 = 14 m·s–1 : h = 
142

2 × 9,81
 = 10 m 

À 70 km·h–1 = 19 m·s–1 : h = 
192

2 × 9,81
 = 18 m 

À 80 km·h–1 = 22 m·s–1 : h = 
252

2 × 9,81
 = 25 m 

À 130 km·h–1 = 36 m·s–1 : h = 
252

2 × 9,81
 = 66 m 

En suivant les indications de l’exercice : 
10
3

 = 3,3 m ; 
18
7

 = 2,6 m ; 
32
11

 = 2,9 m ; 
66
23

 = 2,9 m. 
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On peut imaginer une hauteur d’étage choisie de 
l’ordre de 3 m. 
La comparaison entre vitesse et nombre d’étages 
semble convenable. 
La première critique que nous pouvons faire, c’est de 
confondre « impact » avec une énergie d’impact. 
La deuxième critique que nous pouvons faire est 
d’associer « impact » avec « chute du… », ce qui 
laisserait à penser que cet « impact » mesurerait une 
hauteur de chute. 
Enfin, lorsque l’on écrit une égalité, les deux 
membres doivent avoir la même unité, ce qui n’est 
pas le cas ici. 
Il semble que ce « VITESSE = IMPACT2 » évoquerait 

plutôt la formule de l’énergie cinétique : Ec = 
1
2
mv2 

L’image confond l’énergie cinétique avec le terme 
« vitesse » et la vitesse avec le terme « impact ». 
 
49 a. On déduit du 
schéma ci-contre : 

൜
v0x = v0 cos (ɲ)
v0y = v0 sin (ɲ)  

Le système étant soumis 
uniquement à son poids, 
la deuxième loi de 
Newton s’écrit maԦ = PԦ. 
Comme PԦ = mgԦ, ainsi aሬԦ = gሬԦL = –gL jԦ : le mouvement du 
système est uniformément accéléré. 

Sachant que aሬԦ = 
dvԦ
dt

 et que aሬԦ = gሬԦL, on a en projection 

sur les axes : ቐ
dvx
dt

= 0
dvy

dt
 = –gL

 

En cherchant les primitives et en utilisant les 
conditions initiales (vԦ(0) = vԦ0), on en déduit que : 

൜
vx(t) = v0 cos(ɲ)

vy(t)= –gLt + v0 sin(ɲ) 

Sachant que vԦ(t) = 
dOMሬሬሬሬሬሬԦ

dt
(t), on a donc : 

൞

dx

dt
 = v0cos(ɲ)

dy

dt
 = –gLt + v0sin(ɲ)

 

En cherchant les primitives et en utilisant les 
conditions initiales (le système est à l’origine), on en 

déduit : ቊ
x(t) = v0cos(ɲ)t

y(t) = –
1

2
gLt2 + v0sin(ɲ)t

 

Lorsque y = 0, cela correspond au moment où le 
système décolle (à t = 0) et au moment de 

l’alunissage t = t1. Ainsi, 0 = – 
1
2
gLt2 + v0sin(ɲ)t. 

En factorisant par t : 0 = tቀ– 1
2

gLt + v0sin(ɲ)ቁ 
Cette équation est vraie : 
• si t = 0 ; 

• si – 
1
2
gLt1 + v0sin(ɲ) = 0   soit t1 = 

2v0sin(ɲ)
gL

. 

La portée correspond à l’abscisse de ce point, soit 
x(t1) : x(t1) = v0cos(ɲ)t1 
En remplaçant dans cette expression l’expression de 

t1, on obtient : x(t1) = 
 2v02cos(ɲ)sin(ɲ)

gL
 

d’où v0 = ට x(t1)gL
2cos(ɲ)sin(ɲ) 

Application numérique : 

v0 = ට 400 × 1,62
2 × cos(45,0°) × sin(45,0°) = 21,4 m·s–1 

b. Sur Terre, un tel tir aurait eu une portée de : 

x(t1) = 
2v0

  2cos(ɲ)sin(ɲ)
g

 = 
2 × 21,42 × cos(45,0°) × sin(45,0°)

9,81
 

x(t1) = 46,7 m 
 
50 a. 

 
b. Le système étant soumis uniquement à la force 
électrique, la deuxième loi de Newton s’écrit maԦ = FԦ. 
Comme FԦ = qEԦ, cela donne maԦ = qEԦ. 
q = –e   et   EሬԦ = –EjԦ.   Ainsi, aሬԦ = 

q
m

 EሬԦ = 
eE
m

 jԦ : le 
mouvement du système est uniformément accéléré. 

Sachant que aሬԦ = 
dvԦ
dt

 et que aሬԦ = 
eE
m

 jԦ, on a en projection 

sur les axes : ቐ
dvx
dt

 = 0
dvy

dt
 = eE

m

 

En cherchant les primitives et en utilisant les 
conditions initiales (vԦ(0) = vԦ0), on en déduit que : 

൝
vx(t) = v0

vy(t) = 
eE
m

t
 

Sachant que vԦ(t) = 
dOMሬሬሬሬሬሬԦ

dt
(t), on a donc : ቐ

dx
dt

 = v0

dy
dt

 = eE
m

t
 

En cherchant les primitives et en utilisant les 
conditions initiales (le système est à l’origine), on en 

déduit : ቊ
x(t) = v0t

y(t) = 1
2

eE
m t2

 

En isolant t dans la première égalité : t = 
x
v0

 

On obtient l’équation de la trajectoire de l’électron : 

y = 
1
2

eE
m
ቀ x

v0
ቁ

2
 

soit, comme E = 
U
L

 : y(x) = 
eU

2mL
x2
v02

 

c. L’ordonnée de l’électron au moment de sa sortie 
du condensateur est yS = 14 mm, cela correspond à 

xs = D. On en déduit que ys = 
eU

2mL
D2
v02

   soit 
e
m

 = 
2Lv0

  2ys
UD2

. 
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Application numérique : 

e
m

 = 
2 × 4,0 × 10–2 × ቀ2,50 × 107ቁ

2
 × 14 × 10–3

400 × ቀ10,0 × 10–2ቁ
2  

e
m

 = 1,8 × 1011 C·kg–1 

On en déduit la masse de l’électron : m = 
e

2Lv0
  2ys

UD2

 

Application numérique : 

m = 
1,60 × 10–19

1,8 × 1011  = 9,2 × 10–31 kg 

La valeur retenue étant 9,11 × 10–31 kg, on constate 
que les deux valeurs sont très proches. 
 
51 Au moment de la bascule, l’énergie cinétique est 
transférée entièrement. Ce transfert se faisant au 
niveau du sol (que nous prendrons comme origine 
des altitudes), cela implique que ce transfert se fait 
à un moment où les deux athlètes ont des altitudes 
nulles. Ainsi, c’est l’énergie mécanique dans sa 
totalité qui se transfert, au moment de la bascule, 
d’un athlète à l’autre. 
L’altitude maximale s’obtient au moment où la 
vitesse est nulle (sommet de la trajectoire verticale). 
À ce moment, l’énergie du système est une énergie 
entièrement potentielle (de pesanteur) : 
Em1 = Epp (sommet 1) = m1gy1 
De même pour l’athlète 2 : 
Em2 = Epp (sommet 2) = m2gy2 
L’énergie mécanique est entièrement transférée : 
Em1 = Em2 

m1gy1 = m2gy2   soit m1y1 = m2y2   d’où y2 = 
m1y1
m2

. 

a. Si les deux athlètes ont la même masse : y2 = y1 
Les deux athlètes vont à la même altitude maximale. 

b. Si m2 = 2m1, alors y2 = 
y1
2

. L’athlète 2 aura une 
altitude maximale deux fois plus faible. 

c. Si m2 = 
m1

2
, alors y2 = 2y1. L’athlète 2 aura une 

altitude maximale deux fois plus grande. 
 
52 a. Sur le schéma, l’ion est accéléré en étant 
repoussé par des charges positives (et attiré par des 
négatives), il porte donc une charge positive. 
b. À l’instant initial, la vitesse de l’ion est nulle, son 
énergie cinétique aussi : Ec(I) = 0 
À la sortie du condensateur accélérateur, l’énergie 

cinétique de l’ion est : Ec(F) = 
1
2
mv0

2 

Au cours de l’accélération, le travail de la force 
électrique (constante) est moteur et vaut : 
WIF�FሬԦ� = FሬԦ ڄ�IFሬሬԦ = FL 

Comme FԦ = qEԦ et que q est positif, WIF�FሬԦ� = qEaccL. 

Comme la norme du champ électrique est Eacc = 
Uacc

L
 : 

WIF(FԦ) = q
Uacc

L
L = qUacc 

D’après le théorème de l’énergie cinétique : 
Ec(F) – Ec(I) = WIF(FԦ) = qUacc 

Soit Ec(F) = qUacc   d’où 
1
2
mv0

2 = qUacc 

On obtient v0 = ට2qUacc

m
. 

c. Le système étant soumis uniquement à la force 
électrique, la deuxième loi de Newton s’écrit maԦ = FԦ. 
Comme FԦ = qEԦ, cela donne maሬԦ = qEሬԦ. 

q est positif et EԦ = –E jԦ. Ainsi, aሬԦ = 
q
m

 EሬԦ = – 
qE
m

 jԦ : le 
mouvement du système est uniformément accéléré. 

Sachant que aԦ = 
dvԦ
dt

 et que aԦ = – 
qE
m

 jԦ, on a en 

projection sur les axes : ቐ
dvx
dt

 = 0
dvy

dt
 = – qE

m

 

En cherchant les primitives et en utilisant les 
conditions initiales (vԦ(0) = vԦ0), on en déduit que : 

൝
vx(t) = v0

vy(t) = –
qE
m

t
 

Sachant que vԦ(t) = 
dOMሬሬሬሬሬሬԦ

dt
(t), on a donc : ቐ

dx
dt

 = v0

dy
dt

 = – qE
m

t
 

En cherchant les primitives et en utilisant les 
conditions initiales (le système est à l’origine), on en 

déduit : ቊ
x(t) = v0t

y(t) = – 1
2

qE
m t2

 

d. En isolant t dans la première égalité : t = 
x
v0

 

On obtient l’équation de la trajectoire de l’électron : 

y = – 
1
2

qE
m
ቀ x

v0
ቁ

2
 

Soit, comme E = 
Udév

L'
 : y(x) = – 

qUdév

2mL'
x2
v02

 

On peut alors remplacer l’expression de v0 = ට2qUacc

m
. 

On obtient : y(x) = – 
qUdév

2mL'
m

2qUacc
x2 

En simplifiant : y(x) = – 
Udév

4L'Uacc
x2 

Lorsque x = D, en sortie du condensateur déviateur, 

y(D) = – 
Udév

4L'Uacc
D2. D’où la déviation : d = 

Udév

4L'Uacc
D2 

Cette déviation dépend des dimensions du 
condensateur déviateur, et des deux tensions 
utilisées. Cette déviation ne dépend pas de la masse 
de l’ion (ni de sa charge). 
En mesurant cette déviation, on ne peut accéder aux 
grandeurs caractéristiques de l’ion. 
 
Exercice 53 corrigé à l’adresse hatier-clic.fr/pct368 
 

54 1. Le proton subit la force électrique : FԦ = qEԦ 
Comme q = e, on obtient : FԦ = eEԦ 
En norme : F = eE = 

eU
d

 

Application numérique : 

F = 
1,60 × 10–19 × 2 × 106

4
 = 8 × 10–14 N 

2. La norme du poids est P = mg. 
P = 1,67 × 10–27 × 9,81 = 1,64 × 10–26 N 

https://www.hatier-clic.fr/pct368
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F
P
 = 

8 × 10–14

1,64 × 10–26 = 5 × 1012 

La force électrique est 1012 fois plus grande, en 
norme, que le poids. Le poids est donc négligeable. 
3. La particule étant positive, l’armature A doit être 
chargée positivement (et B négativement) pour qu’il y 
ait accélération. On en déduit que l’armature A est 
reliée à la borne positive du générateur. 
4.1. À l’instant initial, la vitesse de l’ion est nulle, 
son énergie cinétique aussi Ec(I) = 0. 
À la sortie de l’accélérateur, l’énergie cinétique de 
l’ion est Ec(F). 
Au cours de l’accélération, le travail de la force 
électrique (constante) est moteur et vaut : 
WIF�FሬԦ� = FሬԦ ڄ�IFሬሬԦ = Fd 

Comme FԦ = qEԦ et que q = e est positif, WIF(FԦ) = eEd. 

Comme la norme du champ électrique est E = 
U
d

 : 

WIF(FԦ) = e
U
d
d = eU 

D’après le théorème de l’énergie cinétique : 
Ec(F) – Ec(I) = WIF(FԦ) = eU   soit Ec(F) = eU. 
Avec U = 2 MV, Ec(F) = 2 MeV. 
Cette énergie est bien située entre 1,4 et 4 MeV. 

4.2. Ec(F) = 
1
2
mvf

2   d’où 
1
2
mvf

2 = eU 

On obtient : 

vf = ට2eU
m

 = ට2 × 1,60 × 10–19 × 2 × 106

1,67 × 10–27  = 2 × 107 m·s–1 

5.1. On suppose que le référentiel d’étude est 
galiléen. Le système étant soumis uniquement à la 
force électrique, la deuxième loi de Newton s’écrit 
maԦ = FԦ. 
Comme FԦ = qEԦ, cela donne maԦ = qEԦ. Ainsi, aሬԦ = 

q
m

 EሬԦ. 

q = e   et   EሬԦ = EiԦ   donc aሬԦ = 
e
m

EiԦ   soit aሬԦ = 
eU
md

 iԦ. 

On en déduit que l’accélération est uniquement 

dirigée selon l’axe (Ox) : ax = 
eU
md

 

5.2. aሬԦ = 
dvԦ
dt

 et aሬԦ = 
eU
md

 iԦ 

Il vient, en projection sur iԦ : 
dvx
dt

 = 
eU
md

 

La primitive est vx(t) = 
eU
md

t + C1, avec C1 constante. 
Or la vitesse initiale est nulle : vx(0) = C1 = 0 

Ainsi, vx(t) = 
eU
md

t. Cela s’écrit aussi 
dx
dt

 = 
eU
md

t. 

La primitive est x(t) = 
1
2

eU
md

t2 + C2   avec C2 constante. 
Or la position initiale du proton est l’origine de l’axe : 

x(0) = C2 = 0. On en déduit que x(t) = 
1
2

eU
md

t2. 
On peut trouver la vitesse finale atteinte en 
cherchant la vitesse atteinte lorsque x(tf) = d. 

Dans ce cas : 
1
2

eU
md

tf
2 = d   soit tf = dට2m

eU
 

En remplaçant cette expression dans l’expression de la 

vitesse, on obtient : vf = vx(tf) = 
eU
md

tf   soit vf = ට2eU
m

 

On retrouve l’expression (et donc la valeur) du 4.2. 

5.3. 

 
Le graphique montre la distance x parcourue par l’ion 
en fonction du temps t. 
La vitesse est la dérivée par rapport à t de l’abscisse 
(le mouvement est unidirectionnel). Celle-ci 
correspond à la pente de la tangente au point 
considéré. Cette pente passe par deux points 
mesurables aisément : 

v = 
xB – xA

tB – tA
 = 

4,0 – 0
410 × 10–9 – 200 × 10–9 = 1,9 × 107 m·s–1 

On retrouve la valeur calculée, à la précision de la 
mesure près. 

6. L’intensité est : I = 
Q
∆t

   d’où Q = I∆t 

Comme la charge apportée est la charge des N 

protons émis : Nq = Q   soit N = 
I∆t
q

 

Application numérique pour une minute de 
fonctionnement : 

N = 
50 × 10–9 × 1 × 60

1,60 × 10–19  = 1,9 × 1013 

Soit une quantité de matière de protons : 

n = 
N
NA

 = 
1,9 × 1013

6,02 × 1023 = 3,2 × 10–11 mol 

 
55 1. Le référentiel est supposé galiléen. Le 
système étant soumis uniquement à son poids, la 
deuxième loi de Newton s’écrit maԦ = PԦ. Comme 
PԦ = mgԦ, cela donne maሬԦ = mgሬԦ. Ainsi, aሬԦ = gሬԦ = –g jԦ : le 
mouvement du système est uniformément accéléré. 
D’où : ax(t) = 0   et   ay(t) = –g 

2. Sachant que aԦ = 
dvԦ
dt

 et que aሬԦ = gሬԦ, on a en 

projection sur les axes : ቐ
dvx
dt

= 0
dvy

dt
= –g

 

En cherchant les primitives et en utilisant les 
conditions initiales (vԦ(0) = vԦ0), on en déduit que : 

൜
vx(t) = v0

vy(t) = –gt 

Sachant que vԦ(t) = 
dOMሬሬሬሬሬሬԦ

dt
(t), on a donc : ቐ

dx
dt  = v0

dy
dt  = –gt

 

En cherchant les primitives et en utilisant les 
conditions initiales (le système est à x = 0 et y = h), 

on en déduit : ቊ
x(t) = v0t

y(t) = – 1
2 gt2 + h
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En isolant t : t = 
x
v0

 

On obtient l’équation de la trajectoire : 

y(t) = – 
g

2v0
2 x2 + h 

3. Déterminons la portée du tir. Pour cela, cherchons 
la solution correspondant à y = 0 : 

y(x) = – 
g

2v0
2 x2 + h = 0 

On obtient x2 = 
2v0

2h
g

. Comme le x cherché est 

positif : x = v0ට2h
g

 = 21,0 × ට2 × 3,50
9,81

 = 17,7 m 

 est inférieur à 18 m. Le ballon touche le sol avant ݔ
la ligne de fond. 
4.1. Les expressions des énergies cinétique Ec, 
potentielle de pesanteur Epp et mécanique Em du 
ballon en un point quelconque de la trajectoire sont : 

Ec = 
1
2
mv2 Epp = mgy Em = Ec + Epp 

4.2. Le graphique de la figure suivante représente 
l’évolution temporelle de ces trois énergies : 

 
L’énergie mécanique du système est conservée, car 
le système ne subit que son poids (qui est une force 
conservative). Em correspond donc à la courbe 3. 
Le ballon part d’une altitude élevée (3,50 m) pour 
arrivé au sol. Son énergie potentielle de pesanteur va 
donc diminuer au cours du mouvement. Epp 
correspond à la courbe 1. 
La vitesse de la balle va augmenter en arrvant au 
sol. Ec correspond donc à la courbe 2. 
4.3. L’énergie mécanique est conservée entre le 
point de départ et d’arrivée : Em(I) = Em(F) 

Soit 
1
2
mv0

2 + mgh = 
1
2
mvsol

2 

En simplifiant les ݉ de chaque côté de l’égalité, on 

obtient : 
1
2
v0

2 + gh = 
1
2
vsol

2 

d’où l’on déduit vsol = ඥv0
2 + 2gh 

Application numérique : 

vsol = ඥ21,02 + 2 × 9,81 × 3,50 = 22,6 m·s–1 

5. Au cours du mouvement, nous avons considéré 
que le poids agissait seule sur le ballon. 
Or des forces de frottement de l’air agissent. 
Ainsi l’énergie mécanique n’est pas constante et va 
diminuer légèrement au cours du mouvement. 
L’énergie cinétique finale sera donc moins élevée 
que prévu et la vitesse au sol fera de même. 
6. La réception se fera lorsque y = h’ = 80 cm 

Or y(x) = – 
g

2v0
2 x2 + h 

Ainsi, on peut déterminer l’abscisse xr du ballon au 

moment de la réception : h’ = – 
g

2v0
2 xr

2 + h 

Soit xr = v0ට2(h – h')
g

 = 21,0 × ට2 × (3,50 – 0,80)
9,81

 

   xr = 15,6 m 
Cette intersection se fera à l’instant tr : 

tr = 
xr

v0
 = 

15,6
21,0

 = 0,74 s 

Le défenseur devra donc parcourir une distance 
d = L – xr en une durée tr. 

Sa vitesse moyenne devra être : vmoyenne = 
L – xr

tr
 

Application numérique : 

vmoyenne = 
18,0 – 15,6

0,74
 = 3,2 m·s–1 

Cette vitesse semble réaliste pour un athlète de haut 
niveau. 
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